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Functional renormalization group and the field theory of disordered elastic systems
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We study elastic systems, such as interfaces or lattices, pinned by quenched disorder. To escape triviality as
a result of ‘‘dimensional reduction,’’ we use the functional renormalization group. Difficulties arise in the
calculation of the renormalization group functions beyond one-loop order. Even worse, observables such as the
two-point correlation function exhibit the same problem already at one-loop order. These difficulties are due to
the nonanalyticity of the renormalized disorder correlator at zero temperature, which is inherent to the physics
beyond the Larkin length, characterized by many metastable states. As a result, two-loop diagrams, which
involve derivatives of the disorder correlator at the nonanalytic point, are naively ‘‘ambiguous.’’ We examine
several routes out of this dilemma, which lead to a unique renormalizable field theory at two-loop order. It is
also the only theory consistent with the potentiality of the problem. Theb function differs from previous work
and the one at depinning by novel ‘‘anomalous terms.’’ For interfaces and random-bond disorder we find a
roughness exponentz50.208 298 04e10.006 858e2, e542d. For random-field disorder we findz5e/3 and
compute universal amplitudes to orderO(e2). For periodic systems we evaluate the universal amplitude of the
two-point function. We also clarify the dependence of universal amplitudes on the boundary conditions at large
scale. All predictions are in good agreement with numerical and exact results and are an improvement over one
loop. Finally we calculate higher correlation functions, which turn out to be equivalent to those at depinning to
leading order ine.
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I. INTRODUCTION

Elastic objects pinned by quenched disorder are centra
the physics of disordered systems. In the last decades a
siderable amount of research has been devoted to th
From the theory side they are among the simplest, but
quite nontrivial, models of glasses with complex ener
landscape and many metastable states. They are related
remarkably broad set of problems, from subsequences of
dom permutations in mathematics@1–3# and random matri-
ces@4,5# to growth models@6–14# and Burgers turbulence in
physics@15,16#, as well as directed polymers@6,17# and op-
timization problems such as sequence alignment in biol
@18–20#. Foremost, they are very useful models for num
ous experimental systems, each with its specific features
variety of situations. Interfaces in magnets@21,22# experi-
ence either short-range@random-bond~RB!# or long-range
@random-field ~RF!# disorder. Charge density wave
~CDW’s! @23# or the Bragg glass in superconductors@24–28#
are periodic objects pinned by disorder. The contact line
liquid helium meniscus on a rough substrate is governed
long-range~LR! elasticity@29–31#. All these systems can b
parametrized by anN-component height or displaceme
field ux , wherex denotes thed-dimensional internal coordi
nate of the elastic object~we will use uq to denote Fourier
components!. An interface in the three-dimensional~3D!
random-field Ising model hasd52, N51, a vortex lattice
d53, N52, a contact lined51, andN51. The so-called
1063-651X/2004/69~2!/026112~42!/$22.50 69 0261
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directed polymer (d51) has been much studied@32# as it
maps onto the Kardar-Parisi-Zhang growth model@6# for any
N. The equilibrium problem is defined by the partition fun
tion Z5*D@u#exp(2H@u#/T) associated with the Hamil
tonian

H@u#5E ddx
1

2
~¹u!21V~ux ,x!, ~1.1!

which is the sum of an elastic energy which tends to supp
fluctuations away from the perfectly ordered stateu50 and a
random potential which enhances them. The resulting rou
ness exponentz,

^@u~x!2u~x8!#2&;ux2x8u2z, ~1.2!

is measured in experiments for systems at equilibrium (zeq)
or driven by a forcef. Here and beloŵ¯& denote thermal
averages and(¯) disorder ones. In some cases, long-ran
elasticity appears, e.g., for the contact line by integrating
the bulk degrees of freedom@31#, corresponding toq2→uqu
in the elastic energy. As will become clear later, the rand
potential can without loss of generality be a chosen Gaus
with second cumulant,

V~u,x!V~u8,x8!5R~u2u8!dd~x2x8!, ~1.3!
©2004 The American Physical Society12-1
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with various forms: Periodic systems are described b
periodic functionR(u), random-bond disorder by a shor
range function, and random-field disorder of variances by
R(u);2suuu at largeu. Although this paper is devoted t
equilibrium statics, some comparison with dynamics will
made and it is thus useful to indicate the equation of mot

h] tuxt5c¹x
2uxt1F~x,uxt!1 f , ~1.4!

with friction h. The pinning force isF(u,x)52]uV(u,x) of
correlatorD(u)52R9(u) in the bare model.

Despite some significant progress, the model~1.1! has
mostly resisted analytical treatment, and one often has to
on numerics. Apart from the case of the directed polyme
111 dimensions (d51, N51), where a set of exact an
rigorous results was obtained@2,5,33–35#, analytical meth-
ods are scarce. Two main analytical methods exist at pres
both interesting, but also with severe limitations. The fi
one is the replica Gaussian variational method~GVM! @36#.
It is a mean-field method, which can be justified forN5`
and relies on spontaneous replica symmetry breaking~RSB!
@37,38#. Although useful as an approximation, its validity
finite N remains unclear. Indeed, it seems now generally
cepted that RSB does not occur for lowd andN. The remain-
ing so-called weak RSB in excitations@39–41# may not be
different from a more conventional droplet picture. Anoth
exactly solvable mean-field limit is the directed polymer
the Cayley tree, which also mimicsN→`, and there too it is
not fully clear how to meaningfully expand around that lim
@42–44#. The second main analytical method is the fun
tional renormalization group~FRG!, which attempts a di-
mensional expansion aroundd54 @26,27,45–47#. The hope
there is to include fluctuations, neglected in the mean-fi
approaches. However, until now this method has only b
developed to one loop, for good reasons, as we discuss
low. Its consistency has never been checked or tested in
calculation beyond one loop~i.e., lowest order ine542d).
Thus contrarily to pure interacting elastic systems~such as,
e.g., polymers! there is at present no quantitative metho
such as a renormalizable field theory, which would allow o
to compute accurately all universal observables in these
tems.

The central reason for these difficulties is the existence
many metastable states~i.e., local extrema! in these systems
Although qualitative arguments show that they arise bey
the Larkin length@48#, these are hard to capture by conve
tional field theory methods. The best illustration of that is t
so-called dimensional reduction~DR! phenomenon, which
renders naive perturbation theory useless@21,49–53# in
pinned elastic systems as well as in a wider class of di
dered models~e.g., random-field spin models!. Indeed it is
shown that toany order in the disorder at zero temperatu
T50, any physical observable is found to beidentical to its
~trivial! average in a Gaussian random force~Larkin! model,
e.g.,z5(42d)/2 for RB disorder. Thus perturbation theo
appears~naively! unable to help in situations where there a
many metastable states. The two above mentioned met
~GVM and FRG! are presently the only known ways toes-
cape dimensional reductionand to obtain nontrivial values
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for z ~in two different limits, but consistent when they can b
compared@26,27,47#!. The mean-field method accounts fo
metastable states by RSB. This however may go further t
needed since it implies a large number of pure states@i.e.,
low- ~free-! energy states differing byO(T) in ~free! energy#.
The other method, the FRG, captures metastability throug
nonanalytic action with a cusp singularity. Both the RSB a
cusp arise dynamically—i.e. spontaneously—in the lim
studied.

The one-loop FRG has had some success in descri
pinned systems. It was noted by Fisher@46# within a Wilson
scheme analysis of the interface problem ind542e that the
coarse-grained disorder correlator becomesnonanalyticbe-
yond the Larkin scaleLc , yielding large-scale results distinc
from naive perturbation theory. Within this approach an
finite set of operators becomes relevant ind,4, param-
etrized by the second cumulantR(u) of the random poten-
tial. Explicit solution of the one-loop FRG forR(u) gives
several nontrivial attractive fixed points~FP’s! to O(e) pro-
posed in@46# to describe RB, RF disorder and, in@26,27#,
periodic systems such as CDW’s or vortex lattices. All the
fixed points exhibit a ‘‘cusp’’ singularity asR* 9(u)
2R* 9(0);uuu at small uuu. The cusp was interpreted i
terms of shocks in the renormalized force@54#, familiar from
the study of Burgers turbulence~for d51, N51). The dy-
namical FRG was also developed to one loop@55–57# to
describe the depinning transition. The mere existence o
nonzero critical threshold forcef c;uD8(01)u.0 is a direct
consequence of the cusp@it vanishes for an analytic force
correlator D(u)]. Extension to nonzero temperatureT.0
suggested that the cusp is rounded within a thermal boun
layeru;TL2u. This was interpreted to describe thermal a
tivation and leads to a reasonable derivation of the celebr
creep law for activated motion@58,59#.

In standard critical phenomena a successful one-loop
culation usually quickly opens the way for higher-loop com
putations, allowing for accurate calculation of universal o
servables and comparison with simulations and experim
and, eventually, a proof of renormalizability. In the prese
context, however, no such work has appeared in the las
years since the initial proposal of@46#, a striking sign of the
high difficulties which remain. Only recently a two-loop ca
culation was performed@60,61#, but since this study is con
fined to an analyticR(u), it only applies below the Larkin
length and does not consistently address the true large-s
critical behavior. In fact, doubts were even raised@47# about
the validity of thee expansion beyond ordere.

It is thus crucial to construct a renormalizable field theo
which describes statics and depinning of disordered ela
systems and which allows for a systematic expansion ie
542d. As long as this is not achieved, the physical mea
ing and validity of the one-loop approximation does n
stand on solid ground and thus, legitimately, may itself
called into question. Indeed, despite its successes, the
loop approach has obvious weaknesses. One example is
the FRG flow equations for the equilibrium statics and
depinning are identical, while it is clear that these are t
vastly different physical phenomena, depinning being ir
versible. Also, the detailed mechanism by which the syst
2-2
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escapes dimensional reduction in both cases is not really
cidated. Finally, there exists no convincing scheme to co
pute correlations, and in fact no calculation of higher th
two-point correlations has been performed.

Another motivation to investigate the FRG is that
should apply to other disordered systems, such as rand
field spin models and quantum elastic systems, where dim
sional reduction also occurs and progress has been
@45,62–67#. Insight into model~1.1! will thus certainly lead
to progresses in a broader class of disordered systems.

In this paper we construct a renormalizable field the
for the statics of disordered elastic systems beyond one l
The main difficulty is the nonanalytic nature of the theo
~i.e., of the fixed-point effective action! at T50. This makes
it a priori quite different from conventional field theories fo
pure systems. We find that the two-loop diagrams are naiv
‘‘ambiguous,’’ i.e., it is not obvious how to assign a value
them. We want to emphasize that this difficulty already ex
at one loop; e.g.,even the simplest one-loop correction to t
two-point function is naively ‘‘ambiguous.’’Thus it is not a
mere curiosity, but a fundamental problem with the theo
‘‘swept under the rug’’ in all previous studies, but whic
becomes unavoidable to confront at two-loop order. It ori
nates from the metastability inherent in the problem. For
related theory of the depinning transition, we have shown
companion papers@68,69# how to surmount this problem an
we constructed a two-loop renormalizable field theoryfrom
first principles. There, all ambiguities are naturally lifted u
ing the known exact property that the manifold only mov
forward in the slowly moving steady state. Unfortunately
the statics there is no such helpful property and the amb
ity problem is even more arduous. Here we examine
possible ways of curing these difficulties. We find that t
natural physical requirements—i.e., that the theory should
~i! renormalizable~i.e., that a universal continuum limit ex
ists independent of short-scale details!, ~ii ! that the renormal-
ized force should remainpotential, and~iii ! that no stronger
singularity than the cusp inR9(u) should appear to two loop
~i.e., no ‘‘supercusp’’!—are rather restrictive and constra
possible choices. We then propose a theory which satisfie
these physical requirements and is consistent to two lo
The resultingb function differs from the one derived in pre
vious studies@60,61# by novel static ‘‘anomalous terms.
These are different from the dynamical ‘‘anomalous term
obtained in@68–70# showing that indeed depinning and sta
ics differ at two loop, fulfilling another physical requiremen

We then study the fixed points describing several univ
sality classes—i.e., the interface with RB and RF disord
the random periodic problem, and the case of LR elastic
We obtain theO(e2) corrections to several universal quan
ties. The prediction for the roughness exponentz for random-
bond disorder has the correct sign and order of magnitud
notably improve the precision as compared to numerics
d53,2 and to match the exact resultz52/3 in d51. For
random-field disorder we findz5e/3, which, for equilib-
rium, is likely to hold to all orders. By contrast, nontrivia
corrections of orderO(e2) were found for depinning@68,69#.
The amplitude, which in that case is a universal function
the random-field strength, is computed and it is found t
02611
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the two-loop result also improves the agreement as comp
to the exact result known@71# for d50. For the periodic
CDW case we compare with the numerical simulations
d53 and obtain reasonable agreement. Some of the re
of this paper were briefly described in a short version@68#
and agree with a companion study using an exact
@72,73#.

Since the physical results also seem to favor this the
we then look for better methods to justify the various a
sumptions. We found several methods which allow us to
ambiguities and all yield consistent answers. A detailed d
cussion of these methods is given. In particular, we find t
correlation functions can be unambiguously defined in
limit of a small background field which splits apart quasid
generate states when they occur. This is very similar to w
was found in a related study where we obtained the ex
solution of the FRG in the large-N limit @74#. Finally, the
methods introduced here will be used and developed fur
to obtain a renormalizable theory to three loops and comp
its b function in @75#. Let us mention that a first-principle
method which avoids ambiguities is to study the system
T.0. However, this turns out to be highly involved. It
attempted via an exact RG in@72# and studied more recentl
in @76,77# where a field theory of thermal droplet excitatio
was constructed. A short account of our work has appeare
@68#, and a short pedagogical introduction is given
@78,79#.

The outline of this paper is as follows. In Sec. II w
explain in a detailed and pedagogical way the perturba
theory and the power counting. In Sec. III we compute
one-loop~Sec. III A! and two-loop~Sec. III B! corrections to
the disorder. The calculation of the repeated one-loop co
terterm is given in Sec. III C. In Sec. III D we identify th
values for ambiguous graphs. This yields a renormaliza
theory with a finiteb function, which is potential and free o
a supercusp. The more systematic discussion of these a
guities is postponed to Sec. V. We derive theb function and
in Sec. IV present physical results, exponents, and unive
amplitudes toO(e2). Some of these quantities are new a
have not yet been tested numerically. In Sec. V we enum
ate all the methods which aim at lifting ambiguities and e
plain in detail several of them, which gave consistent resu
In Sec. VI we detail the proper definition and calculation
correlation functions. In Appendixes A and B we present t
methods which seem promising, butdo notwork, in order to
illustrate the difficulties of the problem. In Appendix F w
present a summary of all one- and two-loop corrections
cluding finite temperature. In Appendix D we give details
calculations for what we call the sloop elimination metho

The reader interested in the results can skip Secs. II
III and go directly to Sec. IV. The reader interested in
detailed discussion of the problems arising in this fie
theory should read Sec. V.

II. MODEL AND PERTURBATION THEORY

A. Replicated action and effective action

We study the static equilibrium problem using replicas
i.e., consider the partition sum in the presence of source
2-3
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Z@ j #5E )
a

D@ua#expS 2S@u#1E
x
(

a
j x
aux

aD , ~2.1!

from which all static observables can be obtained. The ac
S and replicated Hamiltonian corresponding to Eq.~1.1! are

S@u#5
H@u#

T
5

1

2T E
x
(

a
@~¹ux

a!21m2ux
a#

2
1

2T2 E
x
(
ab

R~ux
a2ux

b!. ~2.2!

a runs from 1 ton and the limit of zero number of replica
n50 is implicit everywhere. We have added a small ma
which confines the interface inside a quadratic well and p
vides an infrared cutoff. We are interested in the large-sc
limit m→0. We will denote

E
q
ªE ddq

~2p!d , ~2.3!

E
x
ªE ddx. ~2.4!

For periodic systems the integration is over the first Brillou
zone. A short-scale UV cutoff is implied atq;L, but for
actual calculations we find it more convenient to use dim
sional regularization. We also consider the effective act
functionalG@u# associated withS. It is, as we recall@80,81#,
the Legendre transform of the generating function of c
nected correlationsW@ j #5 ln Z@ j #, thus defined by eliminat-
ing j in G@u#5 ju2W@ j #, W@ j #5u.

If we had chosen non-Gaussian disorder, additional te
with free sums overp replicas~calledp-replica terms! corre-
sponding to higher cumulants of disorder would be presen
Eq. ~2.2!, together with a factor of 1/Tp. These terms are
generated in the perturbation expansion; i.e., they are pre
in G@u#. We do not include them in Eq.~2.2! because, as we
will see below, these higher-disorder cumulants are not
evant within~conventional! power counting, so for now we
ignore them. The temperatureT appears explicitly in the rep
licated action~2.2!, although we will focus on theT50
limit.

Because the disorder distribution is translation invaria
the disorder term in the above action is invariant under
so-called statistical tilt symmetry@17,82# ~STS!—i.e., the
shift ux

a→ux
a1gx . One implication of STS is that the one

replica replica part of the action@i.e., the first line of Eq.
~2.2!# is uncorrected by disorder; i.e., it is the same inG@u#
andS@u# @83#. Since the elastic coefficient is not renorma
ized, we have set it to unity.

B. Diagrammatics, definitions

We first study perturbation theory, its graphical repres
tation, and power counting. Everywhere in the paper we
note the exact two-point correlation byCab(x2y), i.e., in
Fourier terms
02611
n

s
-
le

-
n

-

s

in

ent

l-

t,
e

-
-

^uq
auq8

b &5~2p!ddd~q1q8!Cab~q!, ~2.5!

while the free correlation function~from the elastic term!
used for perturbation theory in the disorder is denoted
Gab(x2y)5dabG(x2y) and reads, in Fourier represent
tion,

^uq
auq8

b &05~2p!ddd~q1q8!Gab~q!, ~2.6!

Gab~q!5
T

q21m2 dab , ~2.7!

which is represented graphically by a line

a b5
Tdab

q21m2 . ~2.8!

Each propagator thus carries one factor ofG(q)5T/(q2

1m2). Each disorder interaction vertex comes with a fac
of 1/T2 and gives one momentum conservation rule. Sin
each disorder vertex is a function, an arbitrary number
lines can come out of it.k lines coming out of a vertex resu
in k derivativesR(k) after Wick contractions

~2.9!

Since each disorder vertex contains two replicas, it is so
times convenient to use ‘‘split vertices’’ rather than ‘‘unsp
ones.’’ Thus we call ‘‘vertex’’ an unsplit vertex and we call
‘‘point’’ the half of a vertex:

~2.10!

Each unsplit diagram thus gives rise to several split d
grams, as illustrated in Fig. 1

One can define the number of connected components
graph with split vertices. Since each propagator identifi
two replicas, ap-replica term containsp connected compo-
nents. When the two points of a vertex are connected,
vertex is said to be ‘‘saturated.’’ It gives a derivative eval
ated at zeroR(k)(0). Standard momentum loops are loo
with respect to unsplit vertices, while we call ‘‘sloops’’ th
loops with respect to points~in split diagrams!. This is illus-
trated in Fig. 2 The momentum one- and two-loop diagra
which correct the disorder atT50 are shown in Fig. 3~un-
split vertices!. There are three types of two-loop graphsA, B,

FIG. 1. Each diagram with unsplit vertices contains several d
grams with split vertices: here the one-loop unsplit diagram~top!
generates three possible topologically distinct split diagrams,
~shown here, bottom! are two-replica terms, the third one—i.e.,~a!
in Fig. 2—is a three-replica term.
2-4
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andC. Since they have two vertices~a factorR/T2 each! and
three propagators~a factor ofT each!, graphsE andF lead to
corrections toR proportional to temperature and will not b
studied here~see, however, Appendix F!.

It is important to distinguish betweenfully saturated (FS)
diagrams and functional diagrams. The FS diagrams are
those needed for a full average—e.g., a correlation funct
There all fields are contracted and one is only left with
space dependence. These are the standard diagrams in
conventional polynomial field theories such asf4. Then all
vertices are evaluated atu50, yielding products of deriva-
tives R(k)(0). These are also the graphs which come in
standard expansion ofG@u# in powers ofu which generate
the ‘‘proper’’ or ‘‘renormalized’’ vertices—i.e., the sum ove
all one-particle irreducible graphs with some external leg
from which all correlations can be obtained. Note that in
fully saturated diagrams there can be no free point: all po
in a vertex have to be connected to some propagator~and to
some external replica!. Otherwise, there is a free replica su
yielding a factor ofn and a vanishing contribution in th
limit of n50.

However, since we have to deal with a functionR(u), we
will more often consider functional diagrams. A function
diagram still depends on the fieldu. It can depend onu at
several points in space~multilocal term!, as, for example,

.

~2.11!

Such a graph withp connected components corresponds t
p-replica functional term. Or it can represent the project
of such a term onto a local part, as arises in the stand
operator product expansion~OPE!:

~2.12!

FIG. 2. Graphs~a! ~a one-loop diagram! and ~b! ~a two-loop
diagram! each contains three connected components. Since
contain one ‘‘sloop,’’ they are both three-replica terms proportio
to T. The left vertex on diagram~c! is ‘‘saturated:’’ replica indices
are constrained to be equal and thus the diagram does not depe
the left space point.

FIG. 3. Unsplit diagrams to one loopD, one loop with inserted
one-loop countertermG, and two-loop diagramsA, B, C, E, andF.
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Typically, using functional diagrams, we want to compu
the effective action functionalG@u# or its local part—i.e., its
value for a spatially uniform modeux

a5ua, which includes
the corrections to disorder. Specifying the two replicas
each connected component, one example of a one-par
irreducible diagram producing corrections to disorder is

~2.13!

The complete analysis of these corrections will be made
Sec. III. Finally, note that functional diagrams may conta
saturated vertices, whose space and field dependence d
pears@such as~c! in Fig. 2# and that the limitn→0 does not
produce constraints. An example is the calculation ofG@u#
since one can always attach additional external legs to
point by taking a derivative with respect to the fieldu.

C. Dimensional reduction

If we consider fully saturated diagrams and analy
R(u), we find trivial results. This is because atT50 the
model exhibits the property of DR@21,49–53# both in the
statics and dynamics. Its ‘‘naive’’ perturbation theory, o
tained by taking for the disorder correlatorR(u) an analytic
function of u, has a triviality property. As is easy to sho
using the above diagrammatic rules~see a typical cancella
tion due to the ‘‘mounting’’ construction in Fig. 4: see als
Appendix D in Ref.@72#!, the perturbative expansion of an
correlation function̂ P iuxi

ai&S ~of anyanalyticobservable! in

the derivativesR(k)(0) yields to all orders the same result
that obtained from the Gaussian theory settingR(u)
[R9(0)u2/2 ~the so-called Larkin random-force model!. The
two-point function thus reads, to all orders,

C~q!ab
DR5

2R9~0!

~q21m2!2 ~2.14!

~at T50 correlations are independent of the replica indic
ai). This dimensional reduction results in a roughness ex
nentz5(42d)/2, which is well known to be incorrect. On
physical reason is that thisT50 perturbation theory amount
to solving in perturbation the zero-force equation

~2¹21m2!u1F~x,u!50. ~2.15!

This, whenever more than one solution exists~which cer-
tainly happens for smallm!, is clearly not identical to finding

ch
l

on

FIG. 4. Calculation of the two-point function for analyticR(u).
Due to DR, only the first diagram~a! survives. Diagrams~b! and~c!
cancel because by shifting the line one gets a minus sign. Diag
~c! is proportional toR-(0)2 and vanishes in an analytic theor
Similar cancellations occur to all orders.
2-5
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the lowest-energy configuration.1 Curing this problem within
the field theory, is highly nontrivial. Coarse graining with
the FRG up to a scale at which the renormalized disor
correlatorR(u) becomesnonanalytic~which includes some
of the physics of multiple extrema! is one possible route
although understanding exactly how this cures the prob
within the field theory is a difficult open problem.

It is important to note that dimensional reduction is n
the end of perturbation theory, since saturated diagrams
main nontrivial at finite temperature, so one way out is
study T.0. This is not the route chosen here: instead,
will attempt to work atT50 with a nonanalytic action and
focus on functional diagrams which remain nontrivial.

D. Power counting

Let us now consider power counting. Let us recall t
conventional analysis within, e.g., the Wilson sche
@46,47#. The elastic term is invariant underx→bx, u
→bzu, andT→buT, with u5d2212z. Herez is for now
undetermined. Under this transformation the disorder fu
tion R is multiplied bybd22u5b42d12z. It becomes relevan
for d,4, provided z,(42d)/2, which is physically ex-
pected@for instance, in the random periodic case,z50 is the
only possible choice and for other casesz5O(e)]. The re-
scaled dimensionless temperature term scales as2m]mT̃

52uT̃ ~see below! and is formally irrelevant near four di
mension. In the endz will be fixed by the disorder distribu
tion at the fixed point.

To be more precise, we want to determine in the fie
theoretic framework the necessary counterterms to rende
theory UV finite asd→4. The study of superficial diver
gences usually involves examining the irreducible ver
functions~IVF!:

Gu¯u~qi !5)
i 51

Eu d

duqi

G@u#uu50 , ~2.16!

with Eu external fieldsu ~at momentaqi , i 51, . . . ,Eu).
The perturbation expansion of a given IVF to any given
der in the disorder is represented by a set of one-par
irreducible ~1PI! graphs~in unsplit diagrammatics!. Being
the derivative of the effective action, they are the import
physical objects since all averages of products of fieldsu can
be expressed as tree diagrams of the IVF. Finiteness o
IVF thus implies finiteness of all such averages.

However, sinceG@u# is nonanalytic in some direction
~e.g., for a uniform modeux

a5ua), derivatives such as Eq
~2.16! may not exist atq50, and we have to be more gener

1One can easily see that the DR result~2.14! arises if one average
over multiple solutions ua with some random weightsWa

;udet@¹21m21Fu8(x,ua)#u „then using the representation of the de
function exp$i*xû@(2¹21m2)u1F(x,u)#% and averaging over disor
der using Eq.~1.3!…. Summing over multiple solutionsua requires
instead to include the crucial weight exp@2bH(ua)# in order to se-
lect the true ground state.
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and considerfunctional diagrams. The ~disorder part of the!
effective action is the sum ofk-replica terms, denotedGk@u#:

G@u#5 (
k>2

T2kGk@u#. ~2.17!

Each Gk@u# is the sum over 1PI graphs withk connected
components~using split vertices! and itself depends onT as

Gk@u#5(
l>0

TlGk,l@u#, ~2.18!

where l is the number of sloops. Thus atT50 there are no
sloops andGk@u#5Gk,l 50@u# is the sum over 1 PItree
graphs withk connected components~trees in replica space
not position space!.

Let us compute the superficial degree of UV divergencd
of a functional graph entering the expansion of the local p
of the effective action. We denotev the number of unsplit
disorder vertices,I the number of internal lines~propaga-
tors!, L the number of loops, andl the number of sloops. One
has the relations

2v1 l 5k1I , ~2.19!

v1L511I . ~2.20!

The total factors ofT areTI 22v5Tl 2k. At T50 (l 50) the
superficial degree of UV divergence is thus

d5dL22I 5d2k~d22!1~d24!v. ~2.21!

Thus in d54 the only graphs with positive superficial de
grees of divergence are fork51 (quadratic;L2) andk52
~logarithmic divergence!. Here k51 corresponds to a con
stant in the free energy. Because of STS, all single-rep
terms are uncorrected and there is no wave-function re
malization in this model.

Thus to renormalize theT50 theory we needa priori to
look only at graphs withp52 connected components, whic
by definition are those correcting the second cumulantR(u),
compute their divergent parts, and construct the proper co
terterm to the functionR(u). As mentioned above, highe
cumulants are irrelevant by power counting and are supe
cially UV finite. The graphs which contribute to the two
replica partG2@u# haveL loops with L511v1 l . At zero
temperature,l 50: thus,L511v. The loop expansion thus
corresponds to the expansion in power ofR(u) and, as we
will see below, to ane expansion. More generally, using th
above relation one, has, schematically,

Gk,l@u#5 (
L>max~1,21 l 2k!

]u
~4L2412k22l !R~L211k2 l !,

~2.22!

where the number of internal lines gives the total number
derivatives acting on an argumentu of the functionsR. For
instance, the two-replica part atT50 is a sum overL-loop
graphs of the type
2-6
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Gk52,l 50@u#5 (
L>1

]u
4LRL11. ~2.23!

If one now considersT.0, one finds thatd5d2k(d22)
1(d24)v1(d22)l . Each additional power ofT yields an
additional quadratic divergence, more generally a factor
TLd22. Thus to obtain a theory where observables are fin
asL→` one must start from a model where the initial tem
perature scales with the UV cutoff as

T5T̂L22d. ~2.24!

This is similar tof4 theory where it is known that af6 term
can be present and yields a finite UV limit~i.e., does not
spoil renormalizability! only if it has the formg6f6/Ld22.
Such a term, with precisely this cutoff dependence, is in f
usually present in the starting bare model—e.g., in latt
spin models. It then produces only a finite shift tog4 without
changing universal properties.2 Here each factor ofT̂ comes
with a factor ofL22d which compensates the UV divergen
from the graph. Thus the finite-T theory may also be renor
malizable. Computing the resulting shift inR(u) to orderR2

by resumming the diagramsE andF of Fig. 3 and all similar
diagrams to any number of loops has not been attem
here~see, however, Appendix F!. The ‘‘finite shift’’ here is,
however, much less innocuous than inf4 theory since it
smoothes the cusp. The effects of a nonzero temperatur
explored in@74,76,77,84#.

One can use the freedom to rescaleu by m2z. The dimen-
sionless temperatureT̃5Tmu is then defined. The disorde
term inG@u# is then is as in Eq.~2.2! with R(u) replaced by
me24zR̃(umz) in terms of a dimensionless rescaled functi
R̃ of a dimensionless rescaled argument. This will be furt
discussed below.

III. RENORMALIZATION PROGRAM

In this section we compute the effective action to tw
loop order atT50. We are only interested in the part whic
contains UV divergences asd→4. We know from the analy-
sis of the last section that we only need to consider the lo
k52 two-replica part—i.e., the corrections toR(u). These
L51 andL52 loop corrections containv5L11 vertices.
Higher v yields a higher number of replicas.

A. One-loop corrections to disorder

To one loop atT50 there is only one unsplit diagramv
52, corresponding to two split diagrams~a! and~b! as indi-
cated in Fig. 5. Both come with a combinatorial factor
1/2! from Taylor-expanding the exponential function and 1
from the action.~a! has a combinatoric factor of 2 and~b! of
4. Together, they add up to the one-loop correction to dis
der:

2We thank E. Brezin for a discussion on this point.
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d1R~u!5F1

2
R9~u!22R9~0!R9~u!G I 1 , ~3.1!

I 1
m5I 1ªE

q

1

~q21m2!2

5GS 22
d

2Dm2eE
q
e2q2

5
1

~4p!d/2 GS 22
d

2Dm2e

5OS 1

e D . ~3.2!

Note that~b! has a saturated vertex, hence the factorR9(0).
This does not lead to ambiguities in the one-loopb function,
since the FRG to one loop yields a discontinuity only in t
third derivative andR9(u) remains continuous.

B. Two-loop corrections to disorder

There are only three graphs correcting disorder atT50
with L52 loops andv53 vertices. They are denotedA, B,
andC ~see Fig. 6!, and we will examine each of them.

We begin our analysis with classA.

1. Class A

The possible diagrams with split vertices of typeA are
diagrams~a!–~f! given in Fig. 7. The resulting correction t
R(u) is written as

d2R~u!5
1

3!

2

23 3~23!( ~a1b1c1d1e1 f !

5( ~a1b1c1d1e1 f !, ~3.3!

where the combinatorial factors are 1/3! from the Taylor e
pansion of the exponential function, 2/23 from the explicit
factors of 1/2 in the interaction, a factor of 3 to chose t
vertex at the top of the hat, and a factor of 2 for the possi
two choices in each of the vertices. Furthermore, below so
additional combinatorial factors are given: a factor of 2 f

FIG. 5. The two one-loop diagrams with split vertices and t
corresponding diagram with standard~i.e., unsplit! vertices.

FIG. 6. The three possible two-loop unsplit graphs correct
disorder atT50.
2-7
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generic graphs and 1 if it has the mirror symmetry with
spect to the vertical axis. Each diagram symbol denotes
diagram including the symmetry factor. The first two grap
are

a52R9~0!R-~u!2I A , ~3.4!

b5R9~u!R-~u!2I A . ~3.5!

To obtain the sign one can choose an ‘‘orientation’’ in ea
vertex (ua2ub); the final result does not depend on t
choice. The minus sign ina comes because the two legs en
on opposite points in the top vertex. Define the two-lo
momentum integral~see Appendix A in Ref.@69#!

I AªE
q1

E
q2

1

q1
21m2

1

q2
21m2

1

@~q11q2!21m2#2

5S 1

2e2 1
1

4e
1O~e2! D ~eI 1!2. ~3.6!

Graphsa andb are nonambiguous. They are the only cont
butions in an analytic theory. The other graphs are

c52lcR-~0!R9~0!R-~u!I A , ~3.7!

d52ldR-~0!R9~u!R-~u!I A , ~3.8!

e52le„R-~01 !…2R9~u!I A , ~3.9!

f 52l fR-~0!2R9~u!I A , ~3.10!

and vanish ifR(u) is analytic@since thenR-(0)50], but a
priori should be considered whenR(u) is nonanalytic. We
have indicated their ‘‘natural’’ sign and amplitude~e.g., sym-
metry factor settingl i51), but have introduced factorsl i to
recall that they are ambiguous: since R-(01)
52R-(02), one is confronted with a choice each time o
saturates a vertex and there is no obvious way to choose
sign at this stage. We recall that we have definedsaturated
vertices as vertices evaluated atu50, whileunsaturatedver-
tices still containu and do not lead to ambiguities.

At this stage we will not discuss in detail how to give
definite values to these contributions to disorder. This will
done in Sec. V. We will just use the most reasonable assu
tions, which will be reevaluated and justified later. A natu
step is to set

FIG. 7. Graphs at two-loop order in the form of a hat~classA in
Sec. III B 1! contributing to two-replica terms.
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c5d50, ~3.11!

since these graphs cannot correctR(u) as they areodd func-
tions of u, which yields no contribution when inserted int
the action(abR(ua2ub).

2. Class B

We now turn to graphs of typeB ~bubble diagrams!, g– l
represented in Fig. 8. We use the same convention as in
~3.3! and start with the combinatorics. There are three w
to choose the vertex in the middle. Upon splitting the ve
ces, for i and j there are only two choices at the midd
vertex, whereas forg there are four choices. There are al
four choices forh, k, and l. There one must also choose th
rightmost vertex, leading to an extra factor of 2. The fin
result is

g5
1

2
R9~u!2R99~u!I 1

2, ~3.12!

h52R9~u!R99~u!R9~0!I 1
2, ~3.13!

i 5 j 5
1

4
R99~u!R9~0!2I 1

2, ~3.14!

k52lkR9~u!R9~0!R99~0!I 1
2, ~3.15!

l 5l lR9~u!R9~0!R99~0!I 1
2. ~3.16!

Only k and l are ambiguous, but it is also natural to set

k1 l 50, ~3.17!

which we do for now and discuss later.

3. Class C

Diagramsm, n, p, and q of classC are represented in
Fig. 9:

m5c1lmR9~0!R99~0!R9~u!I tI T , ~3.18!

n52c1lnR9~0!R99~0!R9~u!I tI T , ~3.19!

p5c2lpR99~0!R9~u!2I tI T , ~3.20!

q52c2lqR99~0!R9~u!2I tI T , ~3.21!

with

I t5E
q

1

q21m2 , ~3.22!

FIG. 8. Two-loop diagrams of classB.
2-8
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I T5E
q

1

~q21m2!3 . ~3.23!

There it is natural to assume

m1n50, ~3.24!

p1q50, ~3.25!

which we do for now and discuss it later. This leaves
correction to disorder from graphsC, as is the case for de
pinning @69#. This is fortunate, since the integralI t has a
quadratic UV divergence ind54, while I T is UV finite.
Physically, it is unlikely that these could enter physical o
servables as the tadpole divergence can usually be elimin
by proper field reordering~normal ordering! or vacuum sub-
traction.

To summarize, for the equilibrium statics atT50 in per-
turbation of R[R(u), the contributions to the disorder t
one and two loops—i.e., the corresponding terms in the
fective actionG@u,û#—are

d1R~u!5F1

2
R9~u!22R9~0!R9~u!G I 1 , ~3.26!

d2R~u!5$R-~u!2@R9~u!2R9~0!#%I A

1
1

2
$@R9~u!2R9~0!#2R99~u!%I 1

2

2lR-~01!2R9~u!I A . ~3.27!

We have allowed for a yet undetermined constantl5le
22l f . We now show that requiring renormalizability allow
us to fix l.

C. Renormalization method to two loops and calculation
of counterterms

Let us now recall the method, also used in our study
depinning@69#, to renormalize a theory where the interacti
is not a single coupling constant, but a whole function,
disorder correlatorR(u). We denote by R0 the bare
disorder—this is the object in which perturbation theory

FIG. 9. Two-loop diagrams of classC.
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carried out—i.e., one considers the bare action~2.2! with R
→R0 . We denote here byR the renormalized dimensionles
disorder; i.e., the corresponding term in the effective act
G@u# is meR ~i.e., the local two-replica part ofG@u#). Sym-
bolically, we can write

S@u#↔R0 , ~3.28!

G@u#↔meR. ~3.29!

We define the dimensionless symmetric bilinear one-lo
and trilinear two-loop functions@see Eqs.~3.26! and ~3.27!#
such that

d~1!~R,R!5med1R, ~3.30!

d~2!~R,R,R!5med2R. ~3.31!

They can be extended to a nonequal argument usingf (x,y)
ª

1
2 @ f (x1y,x1y)2 f (x,x)2 f (y,y)# and a similar expres-

sion for the trilinear function. Whenever possible, we w
use the shorthand notationd (1)(R)5d (1)(R,R) and d (2)(R)
5d (2)(R,R,R). The expression ofR obtained perturbatively
in powers ofR0 at two-loop order reads

R5m2eR01d~1!~m2eR0!1d~2!~m2eR0!1O~R0
4!.

~3.32!

It contains terms of order 1/e and 1/e2. This is sufficient to
calculate the RG functions at this order. In principle, one h
to keep the finite part of the one-loop terms, but we w
work in a scheme where these terms are exactly 0 by n
malizing all diagrams by the one-loop diagram. Inverting E
~3.32! yields

R05me@R2d~1!~R!2d~2!~R!1d~1,1!~R!1¯#,

~3.33!

whered (1,1)(R) is the one-loop repeated counterterm:

d~1,1!~R!52d~1!
„R,d~1!~R,R!…. ~3.34!

The b function is by definition the derivative ofR at fixed
R0 . It reads

2m]mRuR0

5e@m2eR012d~1!~m2eR0!13d~2!~m2eR0!1¯#.

~3.35!

Using the inversion formula~3.33!, the b function can be
written in terms of the renormalized disorderR:

2m]mRuR0
5e@R1d~1!~R!12d~2!~R!2d~1,1!~R!1¯#.

~3.36!

In order to proceed, let us calculate the repeated one-l
countertermd1,1(R). We start from the one-loop counterter
~3.26!, which has the bilinear form
2-9
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d~1!~ f ,g!52
1

2
@ f 9~u!g9~u!2 f 9~0!g9~u!2 f 9~u!g9~0!# Ĩ 1 ,

~3.37!

with the dimensionless integralĨ 1ªI 1um51 ; we will use the
same convention forĨ AªI Aum51 . Thusd1,1(R) reads

d~1,1!
„R~u!…52d~1!

„R,d~1!~R!…5$@R9~u!2R9~0!#R-~u!2

1@R9~u!2R9~0!#2R99~u!

2R-~01!2R9~u!% Ĩ I
2. ~3.38!

In the course of the calculation the only possible ambigu
could come from

g9~0!5F1

2
R9~u!22R9~0!R9~u!G9U

u→0

5$R-~u!22R99~u!@R9~u!2R9~0!#%uu→0

5R-~01!2, ~3.39!

but there isno ambiguitysince the functionR-(u)2 is con-
tinuous atu50 with valueR-(01)25R-(02)2. This is ex-
actly the same calculation as is done to one loop when c
puting the nontrivial fixed point for the pinning forc
correlator D(u)52R9(u) yielding 05(e22z)D̃(0)
2D8(01)2. Thus there is no doubt that the graphG with the
one-loop counterterm inserted in a one-loop diagram isnon-
ambiguous.

D. Final function, renormalizability, and potentiality

The two-loopb function ~3.36! then becomes, with the
help of Eq.~3.38!,

2m]mR~u!5eR~u!1F1

2
R9~u!22R9~0!R9~u!G~e Ĩ 1!

1$@R9~u!2R9~0!#R-~u!2%e~2 Ĩ A2 Ĩ 1
2!

2@R-~01!#2R9~u!e~2l Ĩ A2 Ĩ 1
2!. ~3.40!

The first result is that, apart from the last ‘‘anomalous’’ ter
the 1/e2 terms cancel in the corrections to disorder. In t
terms coming from graphsA this works because, as we re
call, Ĩ A5@1/2e211/4e21O(e2)#(e Ĩ 1)2 so that the combina
tion e(2 Ĩ A2 Ĩ 1

2) is finite. GraphsB cancel completely since
we have chosen as counterterm the full one-loop graph
for an analytic theory the aboveb function would be finite.
This however is incomplete, since the flow of such ab func-
tion leads to a nonanalyticR(u) above the Larkin scale.

Thus we must consider the last, ‘‘anomalous’’ term in E
~3.40!. It clearly appears that the only value ofl compatible
with the cancellation of the 1/e2 poles is

l51, ~3.41!

leading to a finiteb function. Thus the requirement that th
theory be renormalizable~i.e., yield universal large-scale re
02611
y
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o

.

sults independent of the short scale details! fixes the value
l51. Note that the cancellation of the graphsB also works
thanks to Eq.~3.17!.

It is interesting to compare with what happens at dep
ning. There the cancellation of the 1/e2 terms in the anoma-
lous part is more complicated, but automatic. It require
consistent evaluation of all anomalous nonanalytic diagra
In the depinning theory the cancellation was unusual:
nontrivial bubble diagram~called i 3 in @69#! was crucial in
achieving the cancellation. In the statics the two-loop bub
diagrams of typeB appear to be simply the square of th
one-loop ones, which is the usual situation. This howeve
clearly a consequence of Eq.~3.17!, so the previous experi
ence with depinning indicates that care is required and
will discuss some justification for Eq.~3.17! below.

In the search for a fixed point it is convenient to write t
b function for the rescaled functionR̃(u) defined through

R~u!5
1

e Ĩ 1

m24zR̃~umz!, ~3.42!

which amounts to rescaling the fieldsu by mz. Note that this
is a simple field rescaling and different from standard wa
function renormalization, since as mentioned above ther
none in this theory due to STS. We have also included
one-loop integral factor to simplify notation and further ca
culations~equivalently it can be absorbed in the normaliz
tion of momentum or space integrals!. With this, theb func-
tion takes the simple form

2m]mR̃~u!5~e24z!R̃~u!1zuR̃8~u!

1F1

2
R̃9~u!22R̃9~0!R̃9~u!G

1
1

2
X$@R̃9~u!2R̃9~0!#R̃-~u!2%

2
l

2
X@R̃-~01!#2R̃9~u!, ~3.43!

l51, X51. ~3.44!

We have left al for future use, but its value in the theory w
study here is set to 1. Also for convenience we have int
duced

X5
2e~2I A2I 1

2!

~eI 1!2 , ~3.45!

which is X511O(e) in the e expansion studied here, bu
has a different value for LR elasticity; see below. In fact, it
shown in Appendix E that lime→0X is independent of the
particular infrared cutoff procedure~here a massive scheme!.
Although the global rescaling factor ofR̃,e Ĩ 1 , has O(e)
corrections which depend on the infrared cutoff chosen,
FRG equation above does not depend on it. Note that
2-10
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above equation remains true in fixed dimension, with
appropriate value forX, up to terms of orderR̃4.

We will see that the valuel51 in Eq. ~3.43! has other
highly desirable properties. First, this value isthe only one

which guarantees that the nonanalyticity inR̃(u) does not
becomemore severeat two loops than it is at one loop. Le
us take one derivative of Eq.~3.43! and takeu→01. One
finds

2m]mR̃8~01!5~e23z!R̃8~01!1
1

2
~12l!R̃-~01!3.

~3.46!

Thus, iflÞ1, the cusp inR̃9 and the resulting finite value o
R-(01) immediately creates a cusp inR̃8. The singularity
has become worse. We call this a supercusp. It mus
avoided in the statics~see also discussion in Sec. V!. Inter-
estingly it does occur in the driven dynamics, where it is a
physical signature of irreversibility.

Indeed, this property is intimately related to anoth
highly desirable property of the statics:potentiality. This
property is more conveniently described by considering
flow equation for the~rescaled! correlator of the pinning

force D̃(u)52R̃9(u), the second derivative of Eq.~3.43!:

2m]mD̃~u!5~e22z!D̃~u!1zuD̃8~u!

2
1

2
$@D~u!22D̃~0!#2%9

1
1

2
$@D̃~u!2D̃~0!#D̃8~u!2%9

2
l

2
@D̃8~01!#2D̃9~u!. ~3.47!

Formally, this equation could have been obtained direc
from a study of the dynamical field theory. Such an equat
was indeed obtained at depinning, but with a different va
of l:

ldep521, ~3.48!

which shows that statics and dynamics differ not at one,
at two loops. Integrating the equation forD(u) once yields a
nonzero fixed point value for*D(u) unlessl51. Potential-
ity, on the other hand, requires that the force remain
derivative of a potential and that, for short-range disor
~e.g., RB for interface!, one must have*D(u)50. While
violating potentiality is desirable at depinning where irr
versibility is expected, this would be physically incorrect
the statics and thus again points to the valuel51 as the
physically correct one.

Thus we will for now assume that this is the corre
theory of the statics and explore its consequences in the
section. In Sec. V we will provide better justifi cations a
explain our understanding of the tantalizing problem of a
biguous diagrammatics in the nonanalytic theory of pinn
disordered systems. Especially we will present meth
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which satisfy all the above constraints of renormalizabili
absence of a supercusp, and potentiality up to three-loop
der @75#.

IV. ANALYSIS OF FIXED POINTS AND
PHYSICAL RESULTS

The FRG equation derived above describes several di
ent physical situations and admits a small number of fix
point functionsR* (u) describing a few universality classe
The fixed point associated with a periodic disorder correla
describes single-component periodic systems~such as charge
density waves!. The fixed point associated with a short-ran
~exponentially decaying! correlatorR̃(u) describes a class o
systems with so-called random-bond disorder. There is al
family of fixed points associated with long-range—i.e
algebraic—correlations. This includes, as one particular
ample, random-field disorder, which will be discussed se
rately.

We now give the results for these fixed points, first f
short-range elasticity, then for LR elasticity, and compa
with available numerical and exact results. The most imp
tant quantity to compute is the roughness exponentz. Since
we have shown thatX in Eq. ~3.43! is universal to dominant
order, this proves universality ofz to the order ine studied
here @i.e., O(e2)]. For LR disorder and for periodic fixed
points we can also compute the universal amplitudes for
correlation function of displacements and discuss their
pendence on large-scale boundary conditions. Anticipatin
bit, let us summarize the general result that we use in
case, which is derived in Sec. VI. TheT50 disorder-
averaged two-point function forq→0, q/m fixed, reads for
any dimensiond, in Fourier representation,

uquq85~2p!ddd~q1q8!C~q!, ~4.1!

C~q!5C~q50!Fd~q/m!, ~4.2!

C~q50!5 c̃~d!m2d22z. ~4.3!

The amplitudec̃(d) is given by the relation~exact to all
orders in the present scheme!

c̃~d!52
1

~e Ĩ 1!
R̃* 9~0!. ~4.4!

It is found to be universal only for long-range and period
disorder. The scaling function, computed in Sec. VI for S
and LR elasticity, is always universal~independent of short-
scale details! and satisfiesFd(0)51 and

Fd~z!;Bz2~d12z! for z→`, ~4.5!

B511be1O~e2!, ~4.6!
2-11
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whereb is computed in Sec. VI. This gives us all we need
a calculation toO(e2) of the universal amplitude, e.g., fo
the propagator in the massless limitm!q:

C~q!5c~d!q2~d12z!, ~4.7!

c~d!5 c̃~d!@11be1O~e2!#. ~4.8!

The result forC(q50) in the presence of a mass is al
interesting since it gives the fluctuations of the center-
mass coordinate for an interface physically confined in
quadratic well. Although that situation would be interesti
to study numerically, most numerical results are for fini
size systems of volumeLd ~andm→0). We thus also define
in that case,

CL~q!5c8~d!q2~d12z!gd~gL!, ~4.9!

with limz→` gd(z)51. For periodic boundary conditions,q
52pn/L, nPZd and nÞ0. The prime indicates that th
value of this amplitude depends on the large-scale boun
conditions: i.e., it depends on whether, e.g., a mass is use
periodic boundary conditions as an infrared cutoff. The ra
computed in Sec. VI for short-range elasticity,

c8~d!

c~d!
5121.469 35z1O~e2!, ~4.10!

is unity only for periodic disorder, in which case the amp
tude is independent of both large- and small-scale detail

Before studying the different fixed points, let us menti
an important property, valid under all conditions: IfR̃(u) is
a solution of Eq.~3.43!, then

R̂~u!ªk4R̃~u/k! ~4.11!

is also a solution~for k a constant independent ofm!. We can
use this property to fixR̃(0) or R̃9(0) in the case of nonpe
riodic disorder.~For periodic disorder the solution is uniqu
since the period is fixed.!

A. Nonperiodic systems: Random-bond disorder

Let us now look for a solution of our two-loop FRG equ
tion which decays exponentially fast at infinity as expec
for SR random-bond disorder. To this aim, we have to so
order by order ine the fixed-point equation~3.43! numeri-
cally. Making the ansatz

R̃~u!5er 1~u!1e2r 2~u!1¯ , ~4.12!

z5ez11e2z21¯ , ~4.13!

the partial differential equation to be solved at leading or
is
02611
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05~124z1!r 1~u!1z1ur18~u!1
1

2
r 19~u!22r 19~u!r 19~0!,

15r 1~0!, ~4.14!

where we have used our freedom to normalizeR̃(0)ªe.
Equation~4.14! has a solution for anyz1 , but only for one
specific value ofz1 does this solution decay exponential
fast to 0, without crossing the axis: see Fig. 10. The strat
is thus the following: One guessesz1 and then integrates
Eq. ~4.14! from 0 to infinity. In practice, however, there ar
numerical problems for smallu. One strategy, which we hav
adopted here and which works very well, is to use the va
of z1 to generate a Taylor expansion about 0. This Tay
expansion is then evaluated at 0.5, where the numerica
tegration of Eq.~4.14! is started, both forwards to infinity
~which in practice is chosen to be 25! and backwards to 0
This enables us to control the accuracy of both the Tay
expansion and the numerical integration. The result for
best value

z150.208 298 06~3! ~4.15!

is given in Fig. 10.~Note that in@46# only the first four digits
were given.! On this scale, Taylor expansion and numeric
integration are indistinguishable. The error estimate on
last digit comes from moving the starting point of the n
merical integration~which was 0.5 above! up to 1, which
allows for a crude estimate of the error. We also reprod
the Taylor expansion up to order 25 below:

FIG. 11. Fixed-point functionr 2(u) at two-loop order. We have
plotted a numerical solution~red, converging to 0 for largeu! as
well as the Taylor expansion~4.20! about 0 up to order 25~blue,
converging up tou55).

FIG. 10. The fixed-point functionr 1(u) at one-loop order. We
have plotted a numerical solution~red, converging to 0 at largeu! as
well as the Taylor expansion~4.16! about 0 up to order 25~blue,
converging up tou55).
2-12
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r 1~u!5120.288 797u210.096 7487u320.0109959u410.000 197 282u510.000 016 2077u611.370 5431026u7

11.061 2731027u815.845 3831029u921.500 21310210u1021.198 21310210u1122.529 31310211u12

23.935 84310212u1324.907 17310213u1424.491 54310214u1521.217 58310215u1616.775 79310216u17

12.114 65310216u1814.193 48310217u1916.494 82310218u2017.780 44310219u2115.526 91310220u22

24.375 57310221u2322.722 31310221u2426.743 31310222u251O~u26!. ~4.16!

At second order ine, we have to solve

05r 2~u!24z2r 1~u!24z1r 2~u!1uz2r 18~u!1uz1r 28~u!1r 19~u!r 29~u!2r 19~0!r 29~u!2r 19~u!r 29~0!1
1

2
@r 19~u!2r 19~0!#r 1-~u!2

2
1

2
r 19~u!r 1-~01!2, ~4.17!

05r 2~0!, ~4.18!

where the last equation reflects our choice ofR̃(0)5e. Note that to solve the two-loop order equation, one has to feed in
solution at one-loop order, both the Taylor expansion about 0 and the numerically obtained solution for largeru. Again, z2 is
determined from the condition that the solution decay at infinity. Following the same procedure as at one-loop order,

z250.006 858~1!. ~4.19!

The functionr 2 is plotted in Fig. 11. The Taylor expansion up to order 25 about 0 reads

r 2~u!520.060 4942u210.034 5276u320.006 280 98u410.000 239 628u510.000 019 823u611.422 0231026u715.179 41

31028u828.644 5631029u922.727 5531029u1024.786 07310210u1126.235 31310211u1225.495 41310212u13

28.784 73310215u1411.302 32310213u1513.605 68310214u1616.7239310215u1719.512 99310216u18

19.061 11310217u1929.062 01310220u2022.595 61310218u2127.679 11310219u2221.539 22310219u23

22.365 69310220u2424.429 73310221u251O~u26!. ~4.20!

TABLE I. First column: exponents obtained by settinge542d in the one-loop result. Second
column: exponents obtained by settinge542d in the two-loop result. Third column: errors bars are
estimated as half the two-loop contribution. Fourth column: improved estimates using the exact resultzeq

52/3 in d51 ~see text!.

zeq One loop Two loop Estimate Improved estimate Simulation and exact

d53 0.208 0.215 0.21560.004 0.214 0.2230.01 @85#

d52 0.417 0.444 0.44460.015 0.438 0.4160.01 @85#

d51 0.625 0.687 0.68760.03 2/3 2/3@86#
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One observes thatzSR is necessarily bounded from above b
e/4 as no SR solution can cross this value~to any order!
without exploding. This reflects the exact bound for SR d
order,u,d/2, which simply means that optimization of en
ergy must lower energy fluctuations compared to a sim
sum of random numbers. Equality is obtained for the triv
constant eigenmodeR̃(u)5R̃(0) corresponding toz5e/4,
associated with the fluctuation of the zero mode of the r
dom potential.

We can now discuss our results for the roughness ex
nent. These are summarized in Table I and compared to
02611
-

le
l

-

o-
u-

merical simulations ind53,2 and the exact result for th
directed polymer ind51. A first observation is that the cor
rections compared to the one-loop result have the cor
sign and, further, that they improve the precision of the o
loop result. Given the difficulties associated with this theo
this is a significant achievement. Second, the error bars g
in Table I are estimated as half the two-loop contributio
which should not be taken too literally, as it is difficult t
obtain a good precision from only two terms of the series a
no currently available information about the large order b
havior of this novele expansion. Third, one may try to im
2-13
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prove the precision using the exact resultz52/3 in d51.
Estimating the third-order correction in the three possi
Padéapproximations in order to matchz52/3 for e53, we
obtain consistently the values quoted in the fourth column
Table I. We hope that these predictions can be tested
higher-precision numerics soon.

B. Nonperiodic systems: Random-field disorder

Let us first recall that at the level of thebare model the
static random-field disorder correlator obeysR̃(u);2s̃uuu
at largeuuu @46,72#, wheres̃5(e Ĩ 1)s is proportional to the
amplitude of the random field.

If one studies the large-u behavior in the FRG equatio
~3.43!, one clearly sees that the nonlinear terms do not c
tribute: thus, one has

2m]ms̃5~e23z!s̃. ~4.21!

Thus for a RF fixed point to exist, theO(e2) correction toz
has to vanish:

zRF5e/3. ~4.22!

This will presumably hold to all orders. Indeed, it is cle
that if there is a similarb function to any order, since eachR
carries at least two derivatives and at least one mus
evaluated atuÞ0, the sum of all nonlinear terms to a give
finite order decreases at least asR9(u);1/u. ~This does not
strictly exclude that summing up all orders may yield
slower decay, although it appears far fetched and does
occur in the nonperturbative large-N limit.! The above value
of z ensures thatmeR(u);2suuu in the effective action—
i.e., nonrenormalization ofs.

Note that this argument based on long-range large-u be-
havior isa priori valid for anyl. Since it is made on theR
equation~no such, argument can be made on the equation
D!, it uses the property of potentiality. However, from E
~3.46! with z5e/3 one sees thatlÞ1 is incompatible with
the existence of a fixed point, even a fixed point with
supercusp. Thus the only way to satisfy potentiality for t
static random-field problem seems to haves unrenormal-
ized,z5e/3 andl51 ~the previous discussion of potentia
ity in Sec. III D assumed short-range disorder!.

This must be contrasted with the theory of depinnin
where we found that

zdep5
e

3
~110.143 31e! ~4.23!

following from ldep521 in Eq. ~3.47!. Since in that case
the RG flow is nonpotential, it is clear that no similar arg
ment as above exists to protect the valuez5e/3. ~The force
correlator is short range.! The conjecture of@57# thus appears
rather unphysical in that respect.
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1. Fixed-point function

We first study the fixed-point equation for

D̃~u!52R̃9~u!5
e

3
y~u!, ~4.24!

y~0!51, ~4.25!

and later use the rescaling freedom to tune the solution to
correct value ofs at large scaleu.

The two-loop FRG equation~3.47! becomes (l51)

05~uy!82
1

2
@~y21!2#9

1
e

3 F1

2
@y82~y21!#92

1

2
y8~01!2y9G . ~4.26!

One can then integrate once with respect tou:

05uy2y8~y21!1
e

3 F1

2
@y82~y21!#82

1

2
y8~01!2y8G .

~4.27!

There is no integration constant here because the second
precisely vanishes atu501 ~absence of a supercusp!.

The one-loop solution involves the first line only. Divid
ing by y and integrating overu yields

u2

2
5y1212 ln y1 , ~4.28!

i.e., an implicit equation fory, which definesy5y1(u). It
satisfies

y1~0!51, y18~01!521,

y19~01!5
2

3
, y1-~01!52

1

6
. ~4.29!

We can put the two-loop solution under a similar form. Ma
ing the ansatz

u2

2
5y212 ln y2

e

3
F~y!, ~4.30!

one obtains

F„y~ ū!…5
1

2 E0

ū du

y
@y82~y21!2y#8. ~4.31!

At this order, one can replacey by y1—i.e., useuy5y8(y
21) to eliminatey8. This gives, changing variables fromu
to y,

F~ ȳ!5
1

2 E1

ȳ
dy

1

y

d

dy S y2@u~y!#2

y21
2yD . ~4.32!
2-14
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The last term in the brackets is easily integrated. For
remaining terms, we integrate by part and use Eq.~4.30! to
replaceu2/2 by y212 ln y:

F~ ȳ!5E
1

ȳ
dy

y212 ln y

y21
1

ȳ~ ȳ212 ln ȳ!

ȳ21
2

1

2
ln ȳ.

~4.33!

This yields the final result

F~y!52y211
y ln y

12y
2

1

2
ln y1Li2~12y!, ~4.34!

Li2~z!ªE
z

0

dt
ln~12t !

t
5 (

k51

`
zk

k2 . ~4.35!

We find that

F~y!5
2

3
~y21!22

13

36
~y21!31O„~y21!4

… ~4.36!

has a quadratic behavior aroundy51, similar to the one-loop
result, and corrects the value of the cusp.

2. Universal amplitude

Since we know the exact fixed-point function up to a sc
factor, we can now fix the scale by fitting the exact largeuuu
behavior toR(u);2suuu wheres is the amplitude of the
random field. The general fixed-point solution reads

D̃~u!5
e

3
j2y~u/j!, ~4.37!

wherej can be related tos as

s̃5E
0

`

duD̃~u!5
e

3
j3I y . ~4.38!

We need

I y5E
0

`

duy~u!5E
0

1

dyu~y!5g11eg2 , ~4.39!

g15E
0

1

dyA2~y212 ln y!50.775 304 245 188,

~4.40!

g252E
0

1

dy
F~y!

3A2~y212 ln y!
520.139 455 24.

~4.41!

One can now express

D̃* ~0!5
e

3
j25

e

3 S 3s̃

e D 2/3

I y
22/3 ~4.42!

and thus compute, using Eq.~4.4!, the universal amplitude
~4.3! associated with the modeq50 in the presence of a
confining mass:
02611
e

e

c̃~d!5s2/3S e

3D 1/3

~g11eg2!22/3~e Ĩ 1!21/3

5S e

3D 1/3

~g11eg2!22/3F eGS e

2D
~4p!d/2

G21/3

s2/3,

~4.43!

where one has restored the factorse Ĩ 1 absorbed inD̃ ands̃.
Expanding all factors in a series ofe, one finds

c̃~d!5e1/3@3.524 5920.725 079e1O~e2!#s2/3.
~4.44!

The lowest order was obtained in Ref.@72#, and we have
obtained here the next-order corrections. It is interesting
compare our result with the exact result ind50, which is
@71#

c̃~d50!51.054 238 565 19 . . .s2/3. ~4.45!

While the simple extrapolation settinge54 of Eq. ~4.44! to
one loop c̃(d50)55.59s2/3 is very far off, to two loop it
gives c̃(d50)50.99s2/3, surprisingly close to the exact re
sult. It was noted in Ref.@72# that extrapolation of the one
loop result could be considerably improved by not expand
Eq. ~4.43! in e, but instead directly settinge54 @~with g2
50) in Eq. ~4.43!#. That givesc̃1(d50)50.821s2/3, an un-
derestimate already reasonably close from the exact re
We extend this procedure to two loop by truncating thee
expansion ofI y

22/3 to second order in Eq.~4.43! and then set
e54. This yieldsc̃2(d50)51.22s2/3, and the exact result is
then halfway betweenc̃1(d50) and c̃2(d50). To summa-
rize, our two-loop corrections~4.44! have the correct sign
and order of magnitude to improve the agreement with
exact result ind50.

The universal amplitude for the massless case~4.7! ~or
q@m) is obtained from Eq.~4.8! with b521/3 from Sec.
VI as

c~d!5 c̃~d!F12
1

3
e1O~e2!G

5e1/3@3.524 5921.899 94e1O~e2!#s2/3,

~4.46!

and writing c(d)5 c̃(d)/(11 1
3 e) should provide a reason

able extrapolation to low dimensions. Finally, we recall th
for random-field disorder, this coefficient is different for di
ferent large-scale boundary conditions. The result for p
odic boundary conditions can be obtained from formu
~4.10!.

In Ref. @72#, the one-loop result was compared to t
result of the GVM. It is instructive to pursue this comparis
to two loops. We get, from@72#,
2-15
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c̃GVM~d!5S 2
e

p D 1/3F eGS e

2D
~4p!d/2

G21/3

1

12
e

12

s2/3

5e1/3@3.690 5420.894 223e1O~e2!#s2/3,

~4.47!

cGVM~d!

c̃GVM~d!
5S 12

e22z

2 D S 12
e22z

4 D p~e22z!/2

sin@p~e22z!/2#

512
e

4
1O~e2!, ~4.48!

where in the last line we have insertedz5e/3 and performed
the e expansion. Thus one finds, quite generally, thatbvar
53b/4. As noted in@72#, to one loop the FRG and GVM
give rather close amplitudes~differing by about 5%!. We see
here that to two loop—i.e., next order ine—the difference
increases. Finally,

cGVM~d!5e1/3@3.690 5421.816 86e1O~e2!#s2/3

and the coefficient remains rather close to the one Eq.~4.46!.

C. Generic long-range fixed points

There is a family of fixed points such that

R̃~u!;uuu2~12g!, ~4.49!

associated with

z5
e

2~11g!
. ~4.50!

These fixed points where found for infiniteN in any d in
Refs.@36,74# ~we use the same notation!. They were studied
to first order ine for any N in @47# and argued to be stabl
only for g,g* (d), the value of the crossover to short ran
identified in @47# aszSR5zLR„g* (d)….

Here we have not studied these fixed points in detail,
we note that the two-loop corrections do not changez, by the
same discussion as for the random-field caseg51/2. They
will, however, affect the amplitudes~see Fig. 12!.

FIG. 12. Fixed-point functiony1(u) at one-loop order for non-
periodic disorder.
02611
t

D. Periodic systems

1. Fixed-point function

For periodicR(u) such as, e.g., CDW’s, there is anoth
fixed point of Eq.~3.43!. It is sufficient to study the case
where the period is set to unity; all other cases are ea
obtained using the reparametrization invariance of E
~4.11!. No rescaling is possible in that direction, and thus
roughness exponent is

z50. ~4.51!

The fixed-point function is then periodic and can in the
terval @0,1# be expanded in a Taylor series inu(12u). Even
more, the ansatz

R̃~u!5~a1e1a2e21¯ !1~b1e1b2e21¯ !u2~12u!2

~4.52!

allows us to satisfy the fixed-point equation~3.43! to order
e2 and will presumably work to all orders. For a more ge
eral case of this, see Ref.@70#.

To gain insight into the more general case, let us write
fixed point for Eq.~3.43! with arbitraryl:

R̃* ~u!5
e

2592
1~322l!

e2

7776
1~l21!

e2

432
u~12u!

2S e

72
1

e2

108Du2~12u!2. ~4.53!

One can see in this solution thatl51 is the only value
which avoids the appearance at two loops of the supercus
i.e., a cusp in the potential correlatorR̃(u) rather than in the
force correlatorD̃(u).

The same discussion can be made on the the flow e
tion of D̃(u) by taking two derivatives of Eq.~3.43!. One
finds that there isa priori an unstable direction correspond
ing to a uniform shift inD̃(u)→D̃(u)1cst. While this is
natural in, e.g., depinning, it is here forbidden by the pote
tial nature of the problem which requires

E
0

1

du D~u!50, ~4.54!

since in a potential environment, the integral of the for
over one period must vanish. This is indeed satisfied for
fixed point for D̃(u),

D̃* ~u!52R̃* 9~u!5
e

36
1

e2

54S 11
l21

4 D
2S e

6
1

e2

9 Du~12u!, ~4.55!

only if l51:

E
0

1

du D̃* ~u!5
e2

216
~l21!. ~4.56!

The values for depinning are obtained by setti
l521: in that case, the problem becomes nonpotentia
large scales.
2-16
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2. Universal amplitude

This fixed point implies for the amplitude of the ze
mode in the presence of an harmonic well, defined in
~4.3!, using Eq.~4.4!:

c̃~d!5
~4p!d/2

eGS e

2D S e

36
1

e2

54
1O~e2! D

52.193 25e20.680 427e21O~e3!. ~4.57!

In the other limitm!q one obtains the amplitude~using b
521 from Sec. VI!

c~d!5
~4p!d/2

eGS e

2D S e

36
2

e2

108
1O~e3! D ~4.58!

52.193 25e22.873 67e21O~e3!. ~4.59!

Note that we prove in Sec. VI that this amplitude isindepen-
dentof large-scale boundary conditions and is thus ident
for, e.g., periodic boundary conditions and in presence o
mass. As can be seen from Eq.~4.10!, this is a consequenc
of z being zero.

This can be compared to the GVM method@26,27#:

cGVM~d!5~42d!2d23pd/222GS d

2D ~4.60!

52e22.9538e21O~e3!,
~4.61!

with coefficients surprisingly close to thee expansion.
It is interesting to compare predictions ind53. We recall

that we are studying a problem where the period is unity,
general case being obtained by a trivial rescaling inu. Since
Eq. ~4.59! has a poor behavior@and so does Eq.~4.61!,
which resums into Eq.~4.60!#, it is better to use instead Eq
~4.58!. It was indeed noted in@26,27# that the improved one
loop predictionc1(d53) obtained by settinge51 and ig-
noring thee2/108 term in Eq.~4.58! yields a value rather
close to the prediction of the GVM:

c1~d53!52p/950.6981, ~4.62!

cGVM~d53!51/2. ~4.63!

Including the two-loope2/108 term now givesc2(d53)
50.4654 andc2(d53)50.5235 for the two Pade´ approxi-
mations, respectively. This type of extrapolation makes
GVM and FRG predictions get closer when including t
two-loop corrections. On the other hand, comparison of E
~4.59! and ~4.61! suggests thatc(d).cGVM(d).

This is in reasonable agreement with the numerical res
of Middleton et al. @87#. They obtained good evidence fo
the existence of the Bragg glass~i.e., its stability with respect
to topological defects predicted in@26,27#!. They measure
directly the correlation~4.7! and obtain strong evidence fo
the behavior~4.58! ~as well as the correct correction to sca
ing behavior! with

2c~d53!'1.04 ~4.64!
02611
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@their amplitudeA is twice ourc(d)], which lies in between
the GVM and one-loop FRG.@More precisely two different
discretizations gave 2c(d53)51.0160.04 and 2c(d53)
51.0860.05.]

Another interesting observable is the slow growth of d
placements characteristic of the Bragg glass:

~ux2u0!25Ãd lnuxu ~4.65!

at largex. Performing the momentum integral from Eq.~4.7!,
one obtains

Ãd5
4

~4p!d/2G~d/2!
c~d!

5
4 sin~pe/2!

peS 12
e

2D F e

36
2

e2

108
1O~e3!G . ~4.66!

If one expands each factor ine, it yields

Ãd5
e

18
1

e2

108
1O~e3!. ~4.67!

For comparison, the GVM gives

Ãd,GVM5
e

2p2 . ~4.68!

Here extrapolation directly settinge51 in Eq. ~4.67! looks
possible and yieldsÃ350.0556 to one loop, increasing t
Ã350.0648 to two loops. On the other hand, settinge51 in
Eq. ~4.66! yields insteadÃ350.0707 to one loop, decreasin
to Ã350.047 at two loops. The GVM gives the resu
A3,GVM50.0507.

Another interesting observable is

w25Bd ln L, ~4.69!

w25
1

Ld E
x
ux

22S 1

Ld E
x
uxD 2

, ~4.70!

whereL is the linear system size. In Ref.@87# it was assumed
that Bd5Ãd/2; thus, ind53, B35c(3)/(2p2), yielding a
value ofc(d) consistent with the direct measurement of th
quantity.3 This was also done in@88# where it was deduced

3One can also comment on their result for the extremal excurs
DH5umax2umin . If u were aGaussianvariable with the same two-
point correlator, the exact result for extrema of logarithmically c

related Gaussian variables predicted in@102# yields DH5b̃ ln L

2c̃ ln(ln L)1ã where b̃54A3b/2, c52gAb/6, g53/2, and ã a
fluctuating constant of orderO(1) ~in their notationb is our Bd).

Inserting the value obtained numerically in@87# for b yields b̃
50.795 andc̃50.20. This is in reasonable agreement with the m

sured valuesb̃'0.73 quoted in@87#. Since deviations from Gauss
ian are not expected to be large, this agreement could probabl
improved by using the above form of finite-size corrections~as was
done in @102# for a one-dimensional version where much larg
sizes had to be considered! rather than the simpler form used i
@87#.
2-17
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from a measurement ofBd that 0.98,2c(d53),1.11.4 Al-
though this is a reasonable approximation, it is not ex
Indeed, the quantityBd , contrary toc(d), depends on the
~large-scale! boundary conditions. It is of course universa
since it does not depend on small-scale details. Its value
be computed, e.g., for periodic boundary conditions a
pinned zero mode, and depends on the whole finite-size s
ing function ~4.9! computed in Sec. VI:

w25c~d! (
qÞ0

q2~d12z!gd~qL!. ~4.71!

As shown recently,w2 fluctuates from sample to sample an
the full distribution P(w2) averaged over disorder realiza
tions was computed for the depinning problem@89,90#.

E. Long-range elasticity

Let us now consider the case of long-range elastic
There are physical systems where the elastic energy doe
scale with the square of the wave vectorq asEelastic;q2, but
as Eelastic;uqua. In this situation, the upper critical dimen
sion isdc52a and we define
o

02611
t.

an
d
al-

.
not

eª2a2d. ~4.72!

The most interesting case,a priori relevant to model a con
tact line, is a51; thus, dc52. For calculational conve-
nience, we choose the elastic energy to be

Eelastic;~q21m2!a/2. ~4.73!

This changes the free correlation to

Gab~q!5dab

T

~q21m2!a/2 . ~4.74!

The energy exponent in that case is

u5a2d12z. ~4.75!

The changes are very similar to the case of Ref.@69#, so we
summarize them here only briefly. Theb function is still
given by Eq.~3.40!, but with the integrals replaced by
I 1
~a!5E

q

1

~q21m2!a 5m2e
G~e/2!

G~a!
E

q
e2q2

, ~4.76!

I A
~a!5E

q1 ,q2

1

~q1
21m2!a/2~q2

21m2!a@~q11q2!21m2#a/2 , ~4.77!

and thus theb function is given by Eq.~3.43! with

X→X~a!
ª

2e@2I A
~a!2~ I 1

~a!!2#

~eI 1
~a!!2 5E

0

1 dt

t

11ta/22~11t !a/2

~11t !a/2 1c~a!2cS a

2 D1O~e!. ~4.78!
~See Appendix F of Ref.@69#.! And of course the relation
~3.42! betweenR andR̃ is identical except thate Ĩ 1 must be
replaced bye Ĩ 1

(a) . Since X(a) is finite, the b function is
finite; this is of course necessary for the theory to be ren
malizable. For the cases of interest,a51 anda52, we find

X~2!51, ~4.79!

X~1!54 ln 2. ~4.80!

The exponentz ~as a function ofe! and the fixed-point func-
tion are thus changed only at two loops.

Let us now give the results in the cases of interest

4They also measure the decay of the correlation of exp(2ipu),
which, within a Gaussian approximation for the distribution ofu,
yields the decayL2Ad, with the Bragg glass exponentAd

52p2Ãd .
r-

1. Random-bond disorder

The solution of Eq.~3.43! with X→X(a) can be written, to
second order ine, as

R̃~u!5er 1~u!1e2X~a!r 2~u!1¯ , ~4.81!

z5ez11e2X~a!z21¯ , ~4.82!

since Eq.~4.17! for r 2(u) is linear. Thus one has, for anya,

z50.208 298 06~3!e10.006 858~1!X~a!e21O~e3!.

~4.83!

For the case of most interest,a51, X(1)54 ln 2, one finds
2-18
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z50.208 298 06~3!e10.019 0114~3!e2,

e522d, ~4.84!

andu52z.
It would thus be interesting to perform numerical simu

tions in d51 for the directed polymer with LR elasticity
This would be another nontrivial test of the two-loop corre
tions. The one-loop prediction isz50.208, significantly
smaller than the roughness for SR elasticityz52/3. The na-
ive two-loop result is~settinge51) z'0.22760.01. Error
bars are estimated by half the difference between the o
and two-loop results. Note that the boundu,d/2 impliesz
,1/4 in d51, already rather close to the two-loop result.

2. Random-field disorder

The exponent is still

z5
e

3
~4.85!

and was indeed measured in experiments on an equilibr
contact line@30#. It would be of interest to measure the un
versal distributions there, such as the one defined in@89,90#.

The fixed-point function is given by Eqs.~4.30! and
~4.34! upon replacingF(y)→X(a)F(y). The amplitude of
the zero mode in a wellc(d) is now given by

c̃~d!5s2/3S e

3D 1/3

~g11eX~a!g2!22/3~e Ĩ 1
~a!!21/3

~4.86!

and the amplitude of the massless propagator

c~d!5 c̃~d!~11bae!. ~4.87!

whereba is given in Eq.~6.14! settingz151/3.

3. Periodic disorder

The fixed point becomes

D̃* ~u!52R̃* 9~u!5
e

36
1

e2

54
X~a!2S e

6
1

e2

9
X~a!Du~12u!.

~4.88!

For the periodic case, the universal amplitude reads

c̃~d!5G~a!
~4p!d/2

eGS e

2D S e

36
1

e2

54
X~a!1O~e3! D ~4.89!

and

c~d!5 c̃~d!~11bae!. ~4.90!

Settingz150 in Eq. ~6.14! yields

Ãd5
4

~4p!d/2G~d/2!
c~d!. ~4.91!
02611
-

-

e-

m

Using e52a2d, this gives

Ãd5
1

18
e1

4X~a!13@g1c~a!#16ba

108
e2, ~4.92!

which in the case ofa51 takes the simple form

Ã15
1

18
e1

16 ln 216ba

108
e2. ~4.93!

V. LIFTING AMBIGUITIES IN NONANALYTIC THEORY

A. Summary of possible methods

As we have seen above, ambiguities arise in compu
the effective action at the level of two-loop diagrams if o
uses a nonanalytic action. One can see that these arise
at the one-loop level for correlations~see below Sec. VI!. To
resolve this issue, our strategy has been to use physics
guide and require the theory to be renormalizable, poten
and without a supercusp. This pointed to a specific ass
ment of values to the ‘‘anomalous’’ graphs. The physic
properties of the ensuing theory, studied in the previous s
tion, were found to be quite reasonable. Of course, o
would like to have a better, more detailed justification of t
used ‘‘prescription.’’ Although we do not know at present
a derivation of this theory from first principles, we have d
veloped a set of observations and a number of rather na
and compelling ‘‘rules’’ which all lead to the same theor
We describe below our successful efforts in that direction
well as some unsuccessful ones, which illustrate the d
culty of the problem.

A number of approaches can be explored to lift the am
guities in the nonanalytic theory. We here give a list; some
the methods will be detailed in the forthcoming sections.

~1! Nonzero temperature. At T.0 previous Wilson one-
loop FRG analysis@58,59,67,72# found that the effective ac
tion remains analyticin a boundary layeru;T̃. However,
since the rescaled temperature~2.24! flows to zero asT̃
;mu as m→0 ~temperature being formally irrelevant!, all
~even! derivatives of R(u) higher than second grow un
boundedly asm→0—for instance,R-8(0);R* -(01)2/T̃
~in terms of the zero-temperature fixed-point function!. On a
qualitativelevel one can thus see how finite-T diagrams such
asE in Fig. 3 yielding

;TR99~0!R9~u!→R* -~01!2R9~u! ~5.1!

can build up ‘‘anomalous’’ terms in theb function, hence
confirming what is found here@72#. However, correctly and
quantitatively accounting for higher loops is a nontrivi
problem as stronger blowups in 1/T̃k seem to arise. In fact
each new loop brings two derivatives and a propaga
hence an additional factor 1/T̃. Despite some recent progres
a quantitative finite-temperature approach which would
produce and justify the presente expansion has proved dif
2-19
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ficult @76,77#. Not only for technical reasons, as metho
using exact RG were found to be appropriate, but also
physical reasons, as an extension to nonzeroT must also
handle low-lying thermal excitations in the system~e.g.,
droplets!. A theory from first principles atT.0 is thus pres-
ently not available and will not be further addressed here.
other methods use anonanalytic action.

~2! Exact RG. Exact RG methods directly atT50 have
been studied to one loop@72,91# and two loops@73,92#. Al-
though it does yield interesting insights into the way
handle ambiguities~see below! and confirm the present re
sults, it suffers from basically the same problems as
scribed here.

~3! Direct evaluation of nonanalytic averages. In this ap-
proach one attempts a direct evaluation of nonanalytic a
ages~e.g., in fully saturated diagrams!. For instance, expand
ing at each vertex the disorderR(ua

x2ub
x) in powers ofuua

x

2ub
xu using the proper nonanalytic Taylor expansion,

R9~u!5R9~0!1R-~01!uuu1R99~01!u21¯ , ~5.2!

one can try to compute directly all averages in vertex fu
tions and correlations. After performing a few Wick contra
tions one typically ends up with averages involving si
functions or delta functions. These can be computedin prin-
ciple using the free Gaussian measure: for instance, u
formulas such as

^sgn~u!sgn~v !&05
2

p
arcsinS ^uv&0

A^uu&0^vv&0
D . ~5.3!

Although promising at first sight, the results are disappo
ing. Averages over the thermal measure involve ma
changes of signs which destroy all interesting divergenc
indicating that some physics is missing. The method, brie
described in Appendix B, is thus not developed further
dynamical version of this method, which is similar in spi
@68,69#, did work for depinning, although there it simpl
identified with another method used below, the backgrou
field ~which, for depinning, isuxt→vt1uxt ; see below!.

~4! Calculation ofΓ(u) with excluded vertices and symm
trization. A valid, general, and useful observation~not lim-
ited to this method! is that if one uses theexcluded vertex

1

2T2 (
aÞb

R~ua2ub!, ~5.4!

then all Wick contractions can be performedwithout ambi-
guities. The excluded vertex is as good as the nonexclu
one since one can always add a constant2nR(0) to the
action of the model~2.2!. Thus one can computewithout any
ambiguity the effective actionG(u) for an ‘‘off-diagonal’’
field configuration,

ux
a such thatux

aÞux
b for all aÞb, ~5.5!

since then no vertex is ever evaluated atu50. The drawback
is that one ends up with expressions containing terms suc
02611
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(
aÞb,aÞc

R9~ua2ub!R-~ua2ub!R-~ub2uc!, ~5.6!

which superficially looks like a three-replica term, but due
the exclusions, may in fact contain a two-replica part, wh
can in principle be recovered from the above by adding
propriate diagonal terms, using thatp-replica parts are prop
erly defined asfree replica sums, e.g., from a cumulant e
pansion. The two-replica part of Eq.~5.6! thus naively is

2(
ac

R9~0!R-~0!R-~ua2uc!

1(
ab

R9~ua2ub!R-~ua2ub!R-~0!,

~5.7!

and one is again faced with the problem of assigning a va
to R-(0). Thecalculation with excluded vertices thus yield
a sum ofp-replica terms withp>2, and to project them onto
the needed two-replica part, one may need to continue th
expressions to coinciding argumentsua5ub.

The symmetrization method attempts to do that in
most ‘‘natural’’ way. Using the permutation symmetry ov
replicas and the hypothesis of no supercusp yields a ra
systematic method of continuation. Surprisingly, it fails
yield a renormalizable theory at two loops. We identifi
some difference with methods which do work, but the p
cise reason for the failure in terms of continuity propert
remains unclear. It may thus be that there is a way to m
this method work, but we have not found it. Being intere
ing in spirit, this method is reported in some details in A
pendix A.

If one renounces to the projection onto two-replica term
one can, in a certain sense, obtain renormalizability prop
ties. This generates an infinite number of different repl
sums and seems to be not promising, too. It is describe
Appendix F.

We now come to methods which were found to work a
which will be described in detail in the next section. In all
them one performs the Wick contractions in some given
der ~the order hopefully does not matter! and uses at each
stage some properties. The fact that one can order the W
contractions stems from the identity, which we recall, for a
set of mutually correlated Gaussian variablesui ,

^uiW~u!&5(
j

^uiuj&^]uj
W~u!&, ~5.8!

under very little analyticity assumption forW(u), which can
even be a distribution. At each stage one can either use
cluded or nonexcluded vertices as is found more conveni

~5! Elimination of sloops. We found another method
which seems rather compelling, to determine the two-rep
part of terms such as Eq.~5.6!. It starts, as the previous one
by computing~unambiguously! diagrams with the excluded
vertices. Then instead of symmetrization, one uses ident
derived from the fact that diagrams with free replica su
and which contain sloops cannot appear in aT50 theory and
can thus be set to zero. Further contracting such diagr
2-20
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generates a set of identities, which, remarkably, is suffic
to obtain unambiguously the two-replica projection witho
any further assumption. It works very nicely and produce
renormalizable theory, as we have checked up to three lo
In some sense, it uses in a nontrivial way the constraint
we are working with a trueT50 theory. This method is
detailed below.

~6! Background field method. This method is similar to
method number 3 except that the vertexR(u) at point x is
evaluated at the fieldux

a5ua1dux
a , then expanded indux

a ,
which then are contracted in some order. This amounts
compute the effective action in presence of a uniform ba
ground field which satisfies Eq.~5.5!. Thanks to this uniform
background and upon some rather weak assumptions,
ambiguities seem to disappear. The method is explained
low.

~7! Recursive construction. An efficient method is to con-
struct diagrams recursively. The idea is to identify in a fi
step parts of the diagram, which can be computed with
ambiguity. This is in general the one-loop chain diagra
~3.1!. In a second step, one treats the already calculated
diagrams as effective vertices. In general, these vertices
the same analyticity properties—namely, are deriva
twice—and then have a cusp.„CompareR(u) with @R9(u)
2R9(0)#R-(u)22R9(u)R-(01)2.… By construction, this
method ensures renormalizability, at least as long as the
only one possible path. However, it is not more general t
the demand of renormalizability diagram by diagram, d
cussed below.

~8! Renormalizability diagram by diagram. In Sec. III we
have used aglobal renormalizability requirement: The one
loop repeated counterterm being nonambiguous, one c
fix all ambiguities of the divergent two-loop correction
However, as will be discussed in@75#, this global constraint
appears insufficient at three loops to fix all ambiguities. F
tunately, one notes that renormalizability even gives a str
ger constraint—namely, renormalizabilitydiagram by dia-
gram. The idea goes back to formal proofs of perturbat
renormalizability in field theory; see, e.g.,@93–100#. These
methods define a subtraction operatorR. Graphically, it can
be constructed by drawing a box around each subdiverge
which leads to a ‘‘forest’’ or ‘‘hest’’ of subdiagrams~the
counterterms in the usual language!, which have to be sub
tracted, rendering the diagram ‘‘finite.’’ The advantage of t
procedure is that it explicitly assigns all counterterms to
given diagram, which finally yields a proof of perturbativ
renormalizability. If we demand that this proof go throug
for the functional renormalization group, the counterterm
must necessarily have the same functional dependenc
R(u) as the diagram itself. In general, the counterterms
less ambiguous, and this procedure can thus be used t
ambiguities in the calculation of the diagram itself. By co
struction this procedure is very similar to the recursive c
struction discussed under point~7!.

It has some limitations though. Indeed, if one applies t
procedure to the three-loop calculation, one finds that it r
ders unique all but one ambiguous diagram—namely,
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~5.9!

which has no subdivergence: thus, there are no counterte
which could lift the ambiguities. Thus this diagram must
computed directly and we found that it can be obtained
ambiguously by the sloop elimination method@75#.

~9! Reparametrization invariance. From standard field
theory, one knows that renormalization group functions
not unique, but depend on the renormalization scheme. O
critical exponents are unique. This is reflected in the freed
to reparametrize the coupling constantg according g
→g̃(g) where g̃(g) is a smooth function, which has to b
invertible in the domain of validity of the RGb function.

Here we have chosen a scheme—namely, definingR(u)
from the exact zero-momentum effective action—using
mensional regularization and a mass. One could explore
freedom in performing reparametrization. In the function
RG framework, reparametrizations are also functional, of
form

R~u!→R̂~u!5R̂@R#~u!. ~5.10!

Of course, the new functionR̂(u) does not have the sam
meaning asR(u). Perturbatively, this reads

R~u!→R̂~u!5R~u!1B~R,R!~u!1O~R3!, ~5.11!

whereB(R,R) is a functional ofR. For consistency, one ha
to demand thatB(R,R) has the same analyticity properties
R, at least at the fixed pointR̃5R̃* ; i.e.,B(R,R) should asR
be twice differentiable and then have a cusp. A specifica
useful candidate is the one-loop countertermB(R,R)
5d (1,1)R. One can convince oneself that by choosing t
correct amplitude, one can eliminate all contributions
classA, in favor of contributions of classB. Details can be
found in @75#.

Apart from methods~3! and ~4!, which did not work for
reasons which remain to be better understood, methods~2!
and~5!–~9! were all found to give consistent results, makin
us confident that the resulting theory is sufficiently co
strained by general arguments~such as renormalizability! to
be uniquely identified. Let us now turn to actual calculatio
using these methods.

B. Calculation using the sloop elimination method

1. Unambiguous diagrammatics

Let us redo the calculation of Sec. III B usingexcluded
vertices. From now on we use sometimes the shorthand
tation

uab5ua2ub, ux
ab5ux

a2ux
b ,

Rab5R~ua2ub!, Rab
~p!5R~p!~ua2ub!, ~5.12!

whenever confusion is not possible.
2-21
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The resulting diagrammatics looks very different from t
usual unexcluded one. When making all four Wick contra
tions of the two-loop diagramsA, B, andC in Fig. 6 between
three unsplit vertices one now excludes all diagrams w
saturated vertices, but instead has to allow for more than
connected components and for sloops. The splitted exclu
diagrams corresponding to classesA, B, andC are given in
Fig. 13. There is an additional multiplicative coefficie
1/(m1!m2!m3!m4!) in the combinatorics for each pair o
unsplit vertices~say, ab and cd! linked by an internal line
wherem1 propagators linkac, m2 link ad, m3 link bc, and
m2 link bd. ~This is equivalent to assigning a color to ea
propagator.!

Let us denote bydG5(21/2T2)dA
(2)R the two-loop con-

tribution of all diagrams of classA to the effective action.
One finds

dA
~2!R5F (

aÞb
Rab9 ~Rab- !21 (

aÞb,aÞc
Rab9 Rab- Rac-

2
1

2 (
aÞb,aÞc,bÞc

Rab9 Rac- Rbc- 1
3

2 (
aÞb,aÞc

Rab9 ~Rac- !2

1
1

2 (
aÞb,aÞc,aÞd

Rab9 Rac- Rad- G I A ~5.13!

coming, respectively, and in the same order from graphsa,
b,g,d1h ~they are equal!, andl in Fig. 13. The only graph
common to excluded and free-sum diagrammatics isa,
which is a graphb of Fig. 7, since all the other graphs in Fig
7 have saturated vertices.

FIG. 13. Two-loop diagrams corresponding to Larkin’s hat~top!
and banana~bottom!. The grapha is a one-replica term,b, g, d, and
h are improper three-replica terms, andl is an improper four-
replica term.
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Similarly, the graphs of classB give a total contribution

dB
~2!R5F1

2 (
aÞb

Rab99Rab9 Rab9 1
1

4 (
aÞb,aÞc,aÞd

Rab99Rac9 Rad9

1
1

4 (
aÞb,aÞc,bÞd

Rab99Rac9 Rbd9

1 (
aÞb,aÞc

Rab99Rab9 Rac9 G I 1
2 ~5.14!

coming, respectively, and in the same order from graphsa8,
b8, g8, andd8 in Fig. 13. Again, the only graph common t
excluded and free-sum diagrammatics isa8, which is a
graphg of Fig. 8, since all the other graphs in Fig. 8 ha
saturated vertices.

The contributiondC
(2)R of the diagrams of classC is given

in Appendix C. Note that adding a tadpole does not alter
structure of the summations in the excluded-replica form
ism, since a tadpole can never identify indices on differ
vertices. This indicates that classC does not contain a two
replica contribution, but starts with a three-replica contrib
tion ~timesT!. This is explained in more detail in Appendi
D.

One can first check that whenR(u) is analyticone recov-
ers correctly the same result as Eq.~3.27! setting the last
~anomalous! term to zero. Adding and subtracting the e
cluded terms in Eq.~5.13! to build free replica sums@using
R-(0)50 in that case# or, equivalently, lifting all exclusions
but replacing everywhere

Rab
~p!→Rab

~p!~12dab! ~5.15!

and then expanding and selecting the two-replica part,
finds the contributions

a→R9~u!R-~u!2,

g→ 1

2
R9~0!R-~u!2,

d1h→2
3

2
R9~0!R-~u!2,

b→0,

l→0. ~5.16!

Similarly in Eq. ~5.14! one obtains

a8→ 1

2
R99~u!R9~u!2,

b8→g8→ 1

2
R99~0!R9~0!R9~u!1

1

4
R9~0!2R99~u!,

d8→2R99~0!R9~0!R9~u!2R9~0!R99~u!R9~u!.

~5.17!
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We now want to perform the same projection for a nona
lytic R(u).

2. Sloop elimination method

The idea of the method is very simple. Let us consider
one-loop functional diagram~a! in Fig. 2 which contains a
sloop. It is a three-replica term proportional to the tempe
ture. In aT50 theory such a diagram should not appear,
it can be identically set to zero:

Wª

1

T2 (
abc

R9~ux
ab!R9~uy

ac![0. ~5.18!

It is multiplied byG(x2y)2, which we have not written. We
will also omit global multiplicative numerical factors. Pro
jecting such terms to zero at any stage of further contract
is very natural in our present calculation~and also, e.g., in
the exact RG approach, where terms are constructed re
sively and such forbidden terms must be projected out!. It is
valid only when~i! the summations over replicas are free a
~ii ! the term inside the sum is nonambiguous. These co
tions are met for any diagram with sloops, provided the v
tices have at most two derivatives.~One can in fact start from
vertices which either have no derivative or exactly two.!

Let us illustrate the procedure on an example. We wan
contractW with a third vertexR at pointz; i.e., we first write
the product

W
1

T2 (
de

Rde5
1

T4 (
aÞb,aÞc,de

Rab9 Rac9 Rde[0, ~5.19!

where implicitly here and in the following the vertices are
points x,y,z in that order. We will contract the third verte
twice, once with the first and once with the second—i
look at the term proportional toG(x2y)2G(x2z)G(y
2z). Note that since we will contract each vertex, we a
always allowed to introduce excluded sums~clearly the di-
agonal termsa5b, a5c, or d5e give zero, sinceRab and
its two lowest derivatives ata5b are field-independent con
stants!. Performing the first correction, i.e., inserting (dad
2dae2dbd1dbe) multiplied by the exclusion factors (1
2dab)(12dac)(12dde) yields ~up to a global factor of 2!

1

T3 F (
aÞb,aÞc,aÞe

Rab- Rac9 Rae8 2 (
aÞb,aÞc,bÞe

Rab- Rac9 Rbe8 G[0.

~5.20!

Similarly, the second contraction then yields~up to a global
factor of 4!

1

T2 F1

2 (
aÞb,aÞc,aÞe

Rab- Rac- Rae9 1 (
aÞb,aÞc

Rab- Rac- Rac9

1
1

2 (
aÞb,bÞe

Rab- Rab- Rae9

2
1

2 (
aÞb,aÞc,bÞc

Rab- Rac- Rbc9 G[0. ~5.21!
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This nontrivial identity tells us that the sum of all terms~or
diagrams! generated upon contractions of diagram~a! of Fig.
2 @i.e., the one-loop sloop diagram equivalent to termW in
Eq. ~5.18!# with other vertices must vanish. Stated diffe
ently, a sloop, as well as the sum of all its descende
vanishes. Note that this isnot true for each single term, bu
only for the sum.

A property that we request from a properp-replica term is
that upon one self-contraction it give a (p21)-replica term.
It may also giveT times ap-replica term~a sloop!, but this is
zero atT50, so we can continue to contract. Thus we ha
generated several nontrivial projection identities. The st
ing one is that the two-replica part of Eq.~5.18! is zero, since
Eq. ~5.18! is a proper three-replica term. Thus Eq.~5.19!,
prior to the exclusions, is a legitimate five-replica term, a
its four-replica part is zero. Upon contracting once we obt
that the three-replica part of Eq.~5.20! is zero. The final
contraction tells us that the two-replica part of Eq.~5.21! is
zero. This is what is meant by the symbol ‘‘[’’ above and
the last identity is the one we now use.

Indeed, compare Eq.~5.21! with Eq. ~5.13!. One notices
that all terms apart from the first term in Eq.~5.13! appear in
Eq. ~5.21! and with the same relative coefficients, apart fro
the third one of Eq.~5.13!. Thus one can use Eq.~5.21! to
simplify Eq. ~5.13!:

dA
~2!~R!5F (

aÞb
Rab9 ~Rab- !21 (

aÞb,aÞc
Rab9 ~Rac- !2G I A .

~5.22!

The functionR-(u)2, which appears in the last term, is co
tinuous atu50. It is thus obvious how to rewrite this expre
sion using free summations and extract the two-replica p

dA
~2!R~u!5@„R9~u!2R9~0!…R-~u!22R-~01!2R9~u!#I A ,

~5.23!

which coincides with the contribution of diagramsA in Eq.
~3.27! with l51.

We can write diagrammatically the subtraction that h
been performed

~5.24!

where the loop with the dashed line represents the sub
gram with the sloop—i.e., the term~5.18! ~with in fact the
same global coefficient!. The idea is of course that subtrac
ing sloops is allowed since they formally vanish.

There are other possible identities, which are descend
of other sloops. For instance, a triangular sloop gives, b
similar calculation,

~5.25!

This however does not prove useful to simplifydA
(2)R.

Since the above method generates a large number of i
tities, one can wonder whether they are all compatible.
2-23
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have checked a large number of examples~see the three-loop
calculations in@75#! and found no contradictions, althoug
we have not attempted a general proof.

The diagramsB andC are computed in Appendix D. On
finds, by the same procedure,

dBR5
1

2
R99~u!@R9~u!2R9~0!#2, ~5.26!

dCR50, ~5.27!

confirming our earlier results in Secs. III B 2 and III B 3.

C. Background method

In the background method, one computesG@u# to two
loops for a uniform backgroundu such thatuabÞ0 for any
aÞb. We start from

^S@u1vx#
3&1PI, ~5.28!

Taylor expand invx , and contract all thev fields, keeping
only 1PI diagrams. This is certainly a correct formula for t
uniform ~i.e., zero-momentum! effective action.

Then one needs the smalluuu expansion of derivatives o
R—i.e., Eq.~5.2!—as well as

R-~u!5R9~01!sgn~u!1R99~01!u1¯ , ~5.29!

R99~u!52R-~01!d~u!1R99~01!1¯ . ~5.30!

Let us start from

(
abcde f

R~uab1vx
ab!R~ucd1vy

cd!R~ue f1vz
e f!.

We expand inv, and of course in diagramsA one must
handle terms involvingR-(0) and in diagramsB terms pro-
portional to R99(0). Let us start with diagramsA, which
come from the following term in the Taylor expansion:

(
abcde f

R-~uab!R-~ucd!R9~ue f!^~vx
ab!3~vy

cd!3~vz
e f!2&.

~5.31!

Here and in the following, we will drop all combinatoria
factors. Note that the expectation values vanish at coincid
replicas, so there is no need to specify the values ofR-(uab)
at a5b. Let us perform the firstxy contraction

(
abce f

R-~uab!R-~uad!R9~ue f!^~vx
ab!2~vy

ad!2~vz
e f!2&.

If we now perform a secondxy contraction, there is adaa
term which is a sloop and thus should be discarded.
dad1dba terms build saturated vertices. However, the cor
sponding expectation values contain

R-~uad!^~vy
ad!¯&ud→a50, ~5.32!
02611
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which is reasonably set to zero. Thus the first two contr
tions have been performed with no ambiguity, leading to

(
abe f

R-~uab!R-~uab!R9~ue f!^~vx
ab!~vy

ab!~vz
e f!2&.

~5.33!

This term is no more ambiguous. Expanding as in Eq.~5.29!,
the potentially ambiguous part is

R-~01 !2 (
abe f

R9~ue f!^~vx
ab!~vy

ab!~vz
e f!2&, ~5.34!

clearly free of any ambiguity. It yields the result~5.23!. The
question arises as to whether the result may depend on
order. We found that when first contractingxy and xz, one
reproduces the result~5.23!. However, when one first con
tractsxy andyz ~in any order! one encounters a problem,
one wants to contractyz again. The intermediate result afte
the first two contractions is

(
abe f

R-~uab!R-~uad!R9~ua f!^~vx
ab!~vy

ad!~vz
a f!&.

~5.35!

The next contraction betweenxy contains one term with a
singleRaa- . One would like to argue that this term can be s
to 0. Following this procedure, however, leads to problem
We therefore adopt the rule that whenever one arrives
single Raa- , one has to stop and search for a different pa
Note that this equivalently applies to the recursive constr
tions method. In two-loop order, one can always find a pa
which is unambiguous. It seems to fail at three-loop order
least we have not yet been able to calculate

~5.36!

using any other than the sloop elimination method. Whet
some refinement of the background method can be c
structed there is an open question.

For diagrams of classB one expands as

(
abcde f

R9~uab!R99~ucd!R9~ue f!^~vx
ab!2~vy

cd!4~vz
e f!2&.

Again, no need to attribute a value toR99(ucd) for c5d
since the summand vanishes there. Contractxy:

(
abde f

R9~uab!R99~uad!R9~ue f!^~vx
ab!~vy

ad!3~vz
e f!2&.

~5.37!

Contractingyz, one gets

(
ab f

R9~uab!R99~uad!

3^~vx
ab!~vy

ad!2@R9~ua f!vz
a f2R9~ud f!vz

d f#&.

Contracting nextxy, the danger is the termdad , yielding a
saturated vertex in the middle. But, again, if one takes
2-24
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R99~uad!^~vy
ad!¯&ud→a50, ~5.38!

then one gets unambiguously

(
ab

R9~uab!R99~uab!^~vy
ab!~R9~ua f!vz

a f2R9~ub f!vz
b f!&.

The rest is straightforward. The background method t
seems to work properly at two-loop order.

D. Renormalizability, diagram by diagram

In Sec. V A we have stated that renormalization diagr
by diagram gives a method to lift the ambiguity of a giv
diagram, as long as it has sufficient subdivergences. T
method is inspired by formal proofs of perturbative ren
malizability; the reader may consult@93–100# for more de-
tails. The key ingredient is the subtraction operatorS, which
acts on the effective action—i.e., all terms generated in p
turbation theory which contribute to the renormalizedR and
which subtract the divergences at a scalem. At one-loop
order, the renormalized disorderRm at scalem is symboli-
cally ~with R0 the bare disorder!
bu
th
tt

ra
a

th
e

ia
tio
gu

th

th
th

io
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~5.39!

Here the boxed diagram is defined as

~5.40!

The idea behind this construction is that at any order in p
turbation theory, any observable in the renormalized the
can be written as perturbative expansion in thebare dia-
grams, to which one appliesS. HereS reorganizes the per
turbative expansion in terms of therenormalizeddiagrams.
The action ofS is to subtract divergencies, which graphical
is denoted by drawing a box around each divergent diag
or subdiagram, and to repeat this procedure recursively
side each box. The second line of Eq.~5.39! is manifestly
finite, since it contains the diagram at scalem minus the
diagram at scalem. This is easily interpreted as the one-loo
contribution to theb function.

The power of this method is not revealed before two-lo
order. Let us give the contribution from the hat diagra
~classA!:

. ~5.41!

Using S, this is rewritten as
. ~5.42!
n
Note that not only the global divergence is subtracted,
also the subdivergence in the bottom loop, and finally
divergence which remains, after having subtracted the la
~last term!. Note the factor of 15(21)2 in front of the last
diagram, which comes with the two~nested! boxes.

Let us halt the discussion of the formal subtraction ope
tor at this point and not prove that the procedure renders
expectation values finite; this task is beyond the scope of
article, although it is not difficult to prove, e.g., along th
lines of @99#, once the question of the ambiguities of a d
gram is settled. However, let us discuss what the subtrac
procedure can contribute to the clarification of the ambi
ities.

In standard field theory, the main problem to handle is
cancellation of divergences, whereas the combinatorics
the vertices is usually straightforward. This means that
sum of the integrals, represented by the diagrams in
brackets on the right-hand side of Eq.~5.42!, is finite. This
ensures of course renormalizability, subject to the condit
t
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-
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-
n
-

e
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e
e

n

that all diagrams have the same functional dependence oR.
Here the factorR9(R-)2 should more completely read

@R9~u!2R8~0!#R-~u!22R9~u!R-~01!2. ~5.43!

~5.44!
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In a second step, one has to calculate the remaining diag
which is obtained by treating the box as a point—i.e., a
local vertex. The idea is, of course, that the subdiverge
comes from parts of the integral, where the distances in
box aremuchsmaller than all remaining distances, such th
this replacement is justified. Graphically this can be writt
as

. ~5.45!

Remains to calculate the rightmost term—i.e., to calcul
the one-loop diagram—from one vertexR(u) and a second
vertex V(u)ªR9(u)222R9(u)R9(0). The result is a
straightforward generalization of Eq.~3.1!:

. ~5.46!

We need

V9~u!5R-~u!21¯ . ~5.47!

The omitted terms are proportional toR99R9 and contribute
to classB. We could have avoided their appearance a
gether, but this would have rendered the notation unne
sarily heavy. The term which contributes to Eq.~5.46! is
V9(u)5R-(u)2. It has the same analyticity properties
R9(u) and especially can unambiguously be continued tu
50—i.e.,V9(0)5R-(01)2. Expression~5.46! becomes

~5.48!

without any ambiguity.5

To summarize, using ideas of perturbative renormaliza
ity diagram by diagram, we have been able to compute
ambiguously one of the terms in Eq.~5.42! and can use this
information to make the functional dependence of the wh
expression unambiguous. If we were to chose any other
scription, a proof of perturbative renormalizability is doom
to fail, a scenario which we vehemently reject.

5The same procedure can be applied to the dynamics at the d
ning transition. Care has to be taken there, since it exists an a
tional one-loop counterterm, which is an asymmetric function w
a vanishing integral. The repeated counterterm at two-loop o
~integrated over all positions! therefore also vanishes; however,
gives a nonzero contribution both to classesA andB ~chains and hat
diagrams!, of which the sum vanishes. In order to ensure finiten
diagram by diagram, these contributions may not be neglected.
is discussed in@69#.
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E. Recursive construction

This method is very similar in spirit to the one of Se
V D. There we had first calculated a subdiagram and th
treated the result as a new effective vertex. This proced
can be made a prescription, which ensures renormalizab
and potentiality, since the one-loop diagram ensures the
ter. Only at three-loop order does a new diagram~5.36! ap-
pear which cannot be handled that way, but the proced
which is otherwise very economic, can handle again m
diagrams at three-loop order, using the new three-loop
gram ~5.36!.

VI. CORRELATION FUNCTIONS

Here we address the issue of the calculation of correla
functions. We note that it has not been examined in deta
previous works on theT50 FRG. Usually correlations are
obtained from tree diagrams using the proper or renorm
ized vertices from the polynomial expansion of the effect
action. Thus in a standard theory one could check at
stage that correlation functions are rendered finite by
above counterterms, compute them, and obtain a unive
answer. In a more conventional theory that would be more
less automatic.

Here, as we point out, it is not so easy. Indeed, as
show below, if one tries to compute even the simplest tw
point correlation at nonzero momentum, one finds ambi
ities already at one loop. This is because the effective ac
~the counterterm! is nonanalytic.

Again, the requirement of renormalizability and indepe
dence of short-scale details guide us toward a proper de
tion of the correlation functions that we can compute. Int
estingly, this definition is very similar as the one obtain
from an exact solution in the large-N limit in @74#. Let us
illustrate this in the two-point function and, at the same tim
derive the~finite-size! scaling function for any elasticity~not
done in@69#! for massive and finite-size schemes.

A. Two-point function

We want to compute the two-point correlation function
T50. In Fourier representation it is given by Eq.~4.1! with

C~q!5@G~2!~q!#ab
21 ~6.1!

in terms of the quadratic part of the effective action, whi
reads, at anyT,

G~2!~q!ab5
q21m2

T
dab1GOD

~2!~q!, ~6.2!

GOD
~2!~q50!ªme

R9~0!

T2 ; ~6.3!

i.e., by construction hereR9(0) gives the exact off-diagona
element of the quadratic part of the effective action. Inve
ing the replica matrix gives the relation, exact to all orde

in-
di-

er

s
is
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C~q50!52me
R9~0!

m4
52

1

e Ĩ 1

~R̃9!* ~0!m2d12z.

~6.4!

R(u) is exactly the function entering theb function @in the
rescaled formR̃(u)]. In the second line we have inserted th
fixed-point form, which thus gives exactly theq50 correla-
tions in the small-m limit ~i.e., up to subdominant terms i
1/m) which are bounded because of the small confin
mass.

1. Calculation of scaling function

We now computeC(q) for arbitrary but small wave vec
tor q and to one loop—i.e., to next order ine. One expects
the scaling from~4.2! and that the scaling function is inde
pendent of the short-scale UV details~i.e., universal!, if the
theory is renormalizable. It satisfiesF(0)51 and, from scal-
ing, should satisfyF(z);B/zd12z at largez. In d54 one has
F4(z)51/(11z2)2 and we want to obtain the scaling fun
tion to the next order—i.e., identifyb in B511be
1O(e2).

Let us use straight perturbation theory withR0 , defined as
in Sec. III C, including the one-loop diagrams. This amou
to attaching two external legs to the one-loop diagrams
Fig. 5 and using a nonanalytic6 R0 . Our result is

~q21m2!2C~q!52T2G~2!~q50!

52R09~0!2R0-~01!2I ~q!,

I ~q!5E
p

1

~p21m2!@~p1q!21m2#
. ~6.5!

There is, however, an ambiguity in this calculation: i.
again it is not obvious,a priori, how to interpret theR0-(0)2

which appear. If one computes the one-loop correction us
Eq. ~5.2!, one must evaluate

R-~01!2K ux
auy

bE
zt
(
cd

uuz
c2uz

duuut
c2ut

du L G~z2t !2.

~6.6!

One notes that at the very special pointz5t there is no
ambiguity, as the interaction term is analytic to this ord
Then performing the average amounts to take two der
tives ]ua

]ub
of

6A subtle point in that construction is that if one definesR0 per-
turbatively fromR to a given order, thenR0 is not the original bare
action ~which is analytic!; thus, there is no contradiction inR0

being non analytic. In a sense, introducingR0 is just a trick com-
monly used in field theory to express a closed equation for the fl
of R to the same order. The~perturbative! exact RG method intro-
duced in@103# does that automatically without the need to introdu
R0 .
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R09~uc2ud!25R0-~01!2uuc2udu21O~u3!,

which, to this order, is analytic. In this case this is exactly t
same calculation as for the repeated one-loop counterte
However, the full expression~6.6! integrated overz,t is, it-
self, ambiguous. Interestingly, this simple ambiguity alrea
to one loop has never been discussed previously.

Let us first show thatrenormalizabilityfixes the form to
be the one written in Eq.~6.5!. Indeed, let us reexpress Eq
~6.5! in terms of the renormalized dimensionless disorder
Eqs.~3.33! and ~3.26!:

R09~0!5meR9~0!2R-~01!2m2eI ~0!. ~6.7!

As discussed in Sec. III C, no ambiguity arises when tak
two derivatives of Eq.~3.33! at u501; i.e., the one-loop
counterterm is unambiguous. This gives

~q21m2!2C~q!52me$R9~0!1R-~01!2me@ I ~q!2I ~0!#%.

Thus the substitution~6.7! acts as a counterterm which ex
actly subtracts the divergence, as it should. The result is
nite, as required by renormalizability, only with the abo
choice ~6.5!. Stated differently, theq50 calculation of Eq.
~6.5! fixes the ambiguity. We show below that the metho
described in the previous section also allow us to obtain
result unambiguously. Before that, let us pursue the calc
tion of the scaling function.

Upon using Eq.~3.42! and the fixed-point equation, w
obtain

FdS q

m
D 5

m4

~q21m2!2 F12~e22z!
1

e Ĩ 1

me@ I ~q!2I ~0!#G .

~6.8!

Apart from the dependence onz, the calculation of the scal
ing function is very similar to the one given in@69#. We
perform here a more general calculation which also conta
the case of elasticity of arbitrary range

q21m2→~q21m2!a/2, ~6.9!

and expand ine52a2d. Using that, in that case

w
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GS a

2 D p s,t.0

5
1

GS a

2 D 2 E
p
e2p2E

s,t.0
~st!a/221~s1t !2d/2e2q2st/~s1t !2~s1t !m2

5
1

GS a

2 D 2 E
p
e2p2

m2eGS e

2D E
t.0

ta/221~11t !2d/2F ~11t !1
t

11t

q2

m2G2e/2

. ~6.10!

Defining the one-loop value ofz/e5z11O(e), we obtain, to the same accuracy, the scaling function in the formz
5uqu/m)

Fd~z!5
1

~11z2!a H 12~122z1!
G~a!

GS a

2 D 2 E
0

`

dt ta/221~11t !2aF S 11
tz2

~11t !2D 2e/2

21G J
5

1

~11z2!a H 11
e

2
~122z1!

G~a!

GS a

2 D 2 E
0

1

ds@s~12s!#a/221 ln@11s~12s!z2#J . ~6.11!
on

m
n

hi
e
n

e

s to
ich
they

-
, in
ds
to
ns

m-

to
-
-

@We have used the variable transformati
s51/(11t).] To obtainb, we need the large-z behavior of
the scaling function

Fd~z! ——→
z→` 1

z2a H 11~e22z!F ln z1cS a

2 D2c~a!G J .

~6.12!

We want to match, at largez,

Fd~z!5
1

z2a @11be1O~e2!#ze22z

5
1

z2a @11~e22z!ln z1be1O~e2!#. ~6.13!

The above result yields

b5ba5~122z1!FcS a

2 D2c~a!G
5H 22~122z1!ln 2 for a51,

2~122z1! for a52.
~6.14!

2. Lifting the ambiguity

Let us now present two additional methods to lift the a
biguity in the one-loop correction to the two-point functio
and recover Eq.~6.5!.

In the background method of Sec. V C one performs t
calculation in presence of a background field—i.e., consid
ing that the fieldux

a has a uniform background expectatio
value:
02611
-

s
r-

ux
a5ua1vx

a , ~6.15!

with uaÞub for all aÞb and contracting thevx
a . Then atT

50 the sign of anyua2ub is determined, and the abov
ambiguity in Eq.~6.6! is lifted ~contracting further thevx

a

yields extra factors ofT and thus is not needed here!. Using
the background method is physically natural as it amount
compute correlations by adding a small external field wh
splits the degeneracies between ground states whenever
occur, as was also found in@74#. On the other hand, perform
ing the calculation in the absence of a background field
perturbation theory, directly of the nonanalytic action yiel
a different result, detailed in Appendix B, which appears
be inconsistent. It presumably only captures correlatio
within a single well.

The second method is sloop elimination. We want to co
pute contractions of

1

8T4 ux
auy

a(
cde f

R~uz
c2uz

d!R~uw
e 2uw

f !, ~6.16!

where the two disorder are at pointsz and w, respectively.
Let us restrict our attention to the part proportional
GxzGzw

2 Gwy , which gives theq-dependent part of the two
point function. Sincea is fixed, we need to extract the ‘‘0
replica part’’ of the expression after contractions~which will
necessarily involve excluded vertices!. Starting by contract-
ing twice the twoR’s, we get
2-28
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1

4T2 F (
cÞd

R9~uz
c2uz

d!R9~uw
c 2uw

d !

1 (
cÞd,cÞe

R9~uz
c2uz

d!R9~uw
c 2uw

e !G . ~6.17!

Subtracting the sloopW from Eq. ~5.18! gives ~up to terms
which do not depend on bothw and z, and which thus dis-
appear after the two remaining contractions!

1

4T2 (
cÞd

R9~uz
c2uz

d!R9~uw
c 2uw

d !. ~6.18!

Contracting the externalu’s with Eq. ~6.18!, we obtain~re-
storing the correlation functions!

E
z,w

GwxGwyGxy
2 (

aÞb
~Rab- !2. ~6.19!

The excluded sum can be rewritten as the sum minus
term with coinciding indices. Only the latter is a 0-replic
term, which gives the desired result

2R-~01!2E
z,w

GxzGzw
2 Gwy . ~6.20!

This result can also be obtained writing directly the grap
with excluded vertices and eliminating the descendants
the sloop.

3. Massless finite-size system with periodic boundary conditio

The FRG method described here can also be applied
system of finite size, with, e.g., periodic boundary conditio
u(0)5u(L), and zero mass, which are of interest for n
merical simulations. The momentum integrals in all diagra
are then replaced by discrete sums withq52pn/L, nPZd.
One must, however, be careful in specifying the modeq
50, i.e., ^u&5(1/Ld)*xux . The simplest choice is to con
strain ^u&50 in each disorder configuration, which we d
for now. Since the zero mode is forbidden to fluctuate, su
over momentum in each internal line excludeq50.
02611
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One then finds that the two-loop FRG equation rema
identical to Eq. ~3.43!, the only changes being that~1!

2m]mR̃ has to be replaced byL]LR̃, ~2! m→1/L in the
definition of the rescaled disorder, and~3! the one-loop inte-
gral I 15*k@1/(k21m2)2# entering into the definition of the
rescaled disorder has to be replaced by its homologue
periodic boundary conditions,

I 1→I 185L2d (
nPZd,nÞ0

1

~2p/L !4~n2!2 , ~6.21!

used below.

Here and below we use a prime to distinguish the differ
IR schemes. As we have seen,X is, to dominant order, inde
pendent of the IR cutoff procedure.

Thus we can now compute the two-point function. Fo
lowing the same procedure as above, we find

C~q!5
1

q4
L2z2e

2~R̃9!* ~0!

e Ĩ 18

3F12~e22z!
1

e Ĩ 18
@ Ĩ 8~q!2 Ĩ 8~0!#G , ~6.22!

with Ĩ 8(0)5 Ĩ 18 and, forq52pn/L,

Ĩ 8~q!5 (
mPZp,mÞ0,n1mÞ0

1

~2p!4m2~n1m!2 . ~6.23!

Thus one finds the finite-size scaling function@defined in Eq.
~4.9!#

c8~d!gd~qL!5qd12zC~q!

5~qL!2z2e
2~R̃9!* ~0!

e Ĩ 18

3F12~e22z!
1

e Ĩ 18
@ Ĩ 8~q!2 Ĩ 8~0!#G

~6.24!

as a function ofqL52pn. The asymptotic behavior is
the
F12~e22z!
1

e Ĩ 18
@ Ĩ 8~q!2 Ĩ 8~0!#G ——→

q→`

@11b8e1~e22z!ln~qL!#, ~6.25!

which definesb8. The corresponding equation~6.13!, when regularizing with a mass, holds. Taking the difference between
two equations yields
2-29
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~b2b8!e5 lim
q→`

e22z

e
F Ĩ 8~q!

Ĩ 8~0!
2

Ĩ ~q!

Ĩ ~0!
G , ~6.26!

where Ĩ (q)ªI (q)um51 . To leading order in 1/e, Ĩ 8(q)
5 Ĩ 8(0)5 Ĩ (q)5 Ĩ (0), such that this difference takes th
simpler form

~b2b8!e5
e22z

e Ĩ ~0!

3$ lim
q→`

@ Ĩ 8~q!2Ĩ ~q!#1@ Ĩ ~0!2 Ĩ 8~0!#%1O~e2!.

~6.27!

Now observe that for largeq the first integral can be bounde
by

u Ĩ 8~q!2 Ĩ ~q!u,
const

Lq
, ~6.28!

which is obtained by estimating the maximal difference
integral and discrete sum in each cell~defined by the dis-
creteness of the sum! and then integrating. The differenc
Ĩ (0)2 Ĩ 8(0) is finite and can be evaluated ind54 dimen-
sions. We need the formulas

E
0

`

ds s e2s~n21t!5
1

~n21t!2 , ~6.29!

E
2`

`

dn e2sn2
5Ap

s
, ~6.30!

(
nPZ

e2sn2
5Q3,0~e2s!, ~6.31!

whereQ3,0(t) is the ellipticQ function. This allows to write
sum and integral as

(
nPZ4,nÞ0

1

~n2!2 5E
0

`

ds s$@Q3,0~e2s!#421%, ~6.32!

E d4n
1

~n211!2 5E
0

`

ds s
p2

s2 e2s. ~6.33!

The difference in question is integrated numerically:

Ĩ ~0!2 Ĩ 8~0!5
1

~2p!4 E
0

`

ds sFp2

s2 e2s2@Q3,0~e2s!#411G
52

14.5019

~2p!4 520.009 304 79. ~6.34!

We thus arrive at@e Ĩ (0)51/(8p2)1O(e)#

b82b5
14.5019

~2p!4

122z1

e Ĩ ~0!
50.734 676~122z1!.

~6.35!
02611
f

Since the FRG equation and fixed-point value (R̃9)* (0) is
universal to two loops, the final result for the amplitude ra
between periodic and massive boundary conditions is

c8~d!

c~d!
5122z

Ĩ 8~0!2 Ĩ ~0!

e Ĩ ~0!
1O~e2!

5121.469 35z1O~e2!. ~6.36!

B. Four-point functions and higher

Let us now show how to compute higher correlation fun
tions with no ambiguity using the sloop method. Let us
lustrate the method on, e.g., the four-point function

^ua~w!ua~x!ua~y!ua~z!&c. ~6.37!

The following class of diagrams contributes:

. ~6.38!

An arrow indicates contraction towards an external fie
with position and replica index as indicated. The combina
rial factors are 1/4! from the fourR’s; 1/24, the prefactor of
the R’s, 4! the possibilities to connect theu’s to theR’s; 3
for the ways to make the loop ofR’s. When contracting first
theu’s, there is another 24 for the possibilities, to attach the
u’s to the two replicas ofR. Therefore only the factor of 3
remains, which is the combinatorial factor for ordering fo
points on an unoriented ring.

We start by contracting the fouru’s with four R’s, sche-
matically,

~6.39!

and then we perform the four other contractions. Since
clusions at each vertex can be introduced early on, the n
ber of possibilities is not too high and one easily obtains

Fª5Rab-414Rab-3Rac- 12Rab-2Rac-214Rab- Rac- Rad-2

1Rab- Rac- Rad- Rae- , ~6.40!

where all terms have to be summed over with excluded r
licas at each vertices. Due to the factors ofRab- with an odd
power, it is not trivial how to project this expression onto t
space of 0-replica terms to yield the desired expecta
value ~as in the previous sectiona is fixed and thus no free
replica sum should remain in the final result!.

To perform this projection we will first simplify the abov
expression using sloops. There are a number of poss
sloops which can be subtracted. The first one is obtained
starting from
2-30
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~6.41!

It reads

S1ªRab-41Rab- Rac- Rad- Rae- [0. ~6.42!

The next sloop is

~6.43!

generating

S2ªRab-412Rab-3Rac- 1Rab-2Rac-213Rab- Rac- Rad-2

1Rab- Rac- Rad- Rae- [0. ~6.44!

The last needed sloop is

~6.45!

leading to

S3ªRab-2Rac-212Rab- Rac-2Rad- 1Rab- Rac- Rad- Rae- [0.
~6.46!

The simplest combination out ofF, S1 , S2 , andS3 is

F22S21S353Rab-41Rab-2Rac-2. ~6.47!

This expression is unambiguous because only square
R-(u) appear and it is easily projected onto the 0-repl
part

22R-~01!4, ~6.48!

e.g., one can replaceRab- →(12dab)Rab- in Eq. ~6.47! and
use free summations.

Other possible contributions are given in Fig. 14. Ho
ever, none of these diagrams contributes. The reason is
they are all descendents of a sloop. We start by noting t

~6.49!

is a true one-replica term—i.e., a sloop. When constructin
diagram in Fig. 14,eachof the terms in the excluded replic
formalism is proportional to Eq.~6.49!, thus descendant of
sloop. This means that to any order in perturbation theory
T50, no diagram contributes to a connected expecta
value~of a single replica!, which has two lines parting from
oneR towards external points.
02611
of
a

-
at
t

a

at
n

Thus the leading contribution inR to the connected four-
point function, as determined by the sloop method, is
one-loop diagram

^ua~w!ua~x!ua~y!ua~z!&c

522R-~01!4E
rstu

GrsGstGtuGur~GwrGxsGytGzu

1GwsGxrGytGzu1GwrGxtGysGzu!. ~6.50!

If one expressed this result in terms of the force correla
R-(01)45D9(01)4, we thus find that this expression is fo
mally identical to the one that we obtained for the sam
four-point function at theT50 quasistatic depinning thresh
old @Eq. ~5.4! in @90##. This is quite remarkable given that th
method of calculation there—i.e., via the nonanalytic d
namical field theory—is very different. Of course, the tw
physical situations are different and here one must insert
fixed-point value forR̃-(01) from the statics FRG fixed
point, while in the depinning calculation2D̃9(01) takes a
different value at the fixed point. In both problems the co
nected four-point function starts at orderO(e4). However, in
some cases the difference appears only to the next ordere.
For instance, we can conclude that the results of@90# still
hold here for thestatic random fieldto the lowest order ine
at which they were computed there~of course, one expect
differences at next order ine!. On the other hand, for the
static random-bond case, the result for the connected f
point function will be different from depinning even at lea
ing order in e. It can easily be obtained from the abov
formula following the lines of@90#.

VII. CONCLUSION

In this article we constructed the field theory for the st
ics of disordered elastic systems. It is based on the functio
renormalization group, for which we checked explicit
renormalizability up to two loops. This continuum fiel
theory is novel and highly unconventional: Not only is th

FIG. 14. Other possible contributions to the connected fo
point function. They all are higher replica terms and thus do
contribute. Arrows indicate contraction towards external points.
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coupling constant a function, but more importantly this fun
tion and the resulting effective action of the theory a
nonanalytic at zero temperature, which requires a nontri
extension of the usual diagrammatic formulation.

In a first stage, we showed that two-loop diagrams andin
some cases even one-loop diagramsare at first sight ambigu
ous atT50. Left unaddressed, this finding by itself puts in
question all previous studies of the problem. Indeed,
where in the literature was the problem adressed that e
the one-loop corrections to the most basic object in
theory, the two-point function, are naively ambiguous in t
T50 theory. Since the problem is controlled by a ze
temperature fixed point, there is no way to avoid this iss
An often invoked criticism states that the problems are d
to the limit of n→0 replicas. We would like to point out tha
even though we use replicas, we use them only as a too
perturbative calculations, which could equally well be p
formed using supersymmetry or, at a much heavier cost,
ing disorder-averaged graphs. So replicas are certainly n
the root of any of the difficulties. Instead, the latter origina
from the physics of the system—i.e., the occasional
curence of quasidegenerate minima—resulting in amb
ities sensible to the preparation of the system. How to d
with this problem within a continuum field theory is an ou
standing issue, and any progress in that direction is likely
shed light on other sectors of the theory of disordered s
tems and glasses.

The method we have proposed to lift the apparent am
guities is based on two constraints:~a! that the theory be
renormalizable—i.e., yields universal predictions—and~b!
that it respects the potentiality of the problem—i.e., the f
that all forces are derivatives of a potential. Each of th
physical requirements is sufficient to obtain theb function at
two-loop order and the two-point function and roughne
exponent to second order ine. Next, we have proposed sev
eral more general, more powerful, and mutually consist
methods to deal with these ambiguous graphs, which w
even to higher number of loops and allow one to comp
correlation functions with more than two points. We we
then able to calculate from our theory the roughness ex
nents, as well as some universal amplitudes, for several
versality classes to orderO(e2). In all cases, the prediction
improve the agreement with existing numerical and ex
results, as compared to previous one-loop treatments.
also clarified the situation concerning the universality~pre-
cise dependence on boundary conditions, independenc
small-scale details! of various quantities. Another remarkab
finding is that the one-loop contribution to the four-poi
function is formally identical to the one obtained via th
dynamical calculation at depinning. This hints at a gene
property thatall one-loop diagrams are undistinguishable
the statics and at depinning. It would be extremely intere
ing to perform higher-precision numerical simulations of t
statics and to determine not only exponents, but unive
amplitudes and scaling functions, to test the predictions
our theory. We strongly encourage such studies.

Thus in this paper we have proposed an answer to
highly nontrivial issue of constructing a renormalizable fie
theory for disordered elastic systems. Contrarily to
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closely related field theory of depinning, which we were ab
to build from first principles, we have not yet found a firs
principles derivation of the theory for the statics. Howev
we have found that the theory is so highly constrained a
the results so encouraging that we strongly believe that
construction of the field is unique. It is, after all, often th
case in physics that the proper field theory is first identifi
by recurrence to higher physical principles such as renorm
izability or symmetries, as is exemplified by the Ginsbu
Landau theory of superconductivity, for which only later w
a microscopic derivation found, or gauge theories in parti
physics.
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APPENDIX A: SYMMETRIZATION METHOD

1. Continuity of the renormalized disorder and summary
of the method

The first observation is that one expects~if decomposition
in p-replica terms is to mean anything! that one can write the
~local disorder part of the! effective action as a sum ove
well-definedp-replica terms in the form

2G@u#5(
p

1

Tp Gp@u#5(
p

1

p!Tp (
a1 ,...,ap

F ~p!~ua1
,...,uap

!,

~A1!

where the functionsF (p) have full permutation symmetry
The idea of the symmetrization method is that we also
pect, even atT50, that these functionsF (p) should becon-
tinuousin their arguments when a number of them coincid

This seems to be a rather weak and natural assump
Physically, these functions can be interpreted as thepth con-
nected cumulants of a renormalized disorder—i.e., a rand
potentialVR(u,x) in each environment. Discontinuity of th
F (p) would mean that theVR(u,x) would not be a continuous
function. This is not what one expects. Indeed, discontinu
singularities~the shocks! are expected to occur only in th
force FR(u,x)52¹uVR(u,x) as is clear from the study o
the Burgers equation~see, e.g.,@54# for a discussion of the
simple case: in the elastic manifold formulation the shoc
corresponds to rare ground-state degeneracies!. One thus ex-
pectsVR(u,x) to be a continuous function ofu.

A further and more stringent assumption, discuss
above, is the absence of a supercusp. A supercusp w
meanR8(01).0. Thus we assume that the nonanalyticity
2-32
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the effective action starts asuuu3. The usual interpretation7 is
that there is a finite density of shocks and just counting h
many shocks there is in a interval betweenu and u8 yields
the uu2u8u3 nonanalyticity inR(u).

Let us summarize the method before detailing actual
culations.

We thus define here the symmetrization method assum
no supercusp as a working hypothesis. We thencomputecor-
rections to the~local disorder part of the! effective action up
to a given order in powers ofR, with excluded vertices for
any vector such thatuaÞub for aÞb, thus with no ambigu-
ity. This yields, as in Sec. V B 1, sums over more than t
replicas with exclusions. These exclusions are not perm
tion symmetric, so we first rewrite them in an explicitly pe
mutation symmetric way which can be done with no am
guity ~see below!. Thus we have a sum of terms of the for

(
a1 ,...,ap ;2Þ2

f s~ua1
,...,uap

!, ~A2!

where 2Þ2 is a shorthand notation foraiÞaj for all
iÞ j —i.e., symmetrized exclusions. Each functionf is fully
permutation symmetric, as indicated by thes superscript.
Next, the nontrivial part is that weexplicitly verifythat these
symmetrizedcorrections can indeed be continued to coinc
ing points unambiguously—e.g., the lim
f s(u1 ,u1 ,u3 ,...,uap

) exists and is independent of the dire
tion of approach. This in itself shows that the continu
discussed above seems to work. The existence of a f
replica term obliges us to also consider three coincid
points. This is done by consideringf ss(u1 ,u1 ,u3 ,u4)—i.e.,
symmetrizing the result of two coinciding points overu1 ,
u3 , u4 and then takingu3→u1 . We check explicitly that this
again gives a function which can be continued unambi
ously. Thus, at first sight, it would appear as the ideal met
to extract the functionsF (p) above to orderR3.

2. Calculations

Let us reconsider the diagrams of Fig. 13. We first tra
form them in sum with symmetrized constraints. We illu
trate this on diagramb where the sum can be reorganized

7One should be careful in these arguments, and consider the
cise definition ofR(u). Indeed, one could argue that if there a
many small shocks they could build a supercusp. For instance,
sider the nontriviald50 limit of the random-field model, when
V(u) has at largeu the statistics of a Brownian motion. Then,
some definitions of a coarse-grained disorder, e.g., such as us
@71# where this model was solved exactly,VR(u) is a continuous
one-dimensional Brownian motion, thus with a infinite number
small shocks and indeed a supercusp. However, in the presen
per, VR(u) is defined from the replicated effective action and n
from the action, and should possess—in that case—a weaker s
larity.
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b; (
aÞb,aÞc

Rab9 Rab- Rac-

5 (
ab;2Þ2

Rab9 Rab-21 (
abc;2Þ2

Rab9 Rab- Rac- , ~A3!

with clearly no ambiguity. Performing similar rearrangeme
on all the graphs of classA yields the sum of the graphs:

dAR54 (
ab;2Þ2

Rab9 Rab-212 (
abc;2Þ2

Rab9 Rab- Rac-

2
1

2 (
abc;2Þ2

Rab9 Rac- Rbc- 12 (
abc;2Þ2

Rab9 Rac-2

1
1

2 (
abcd;2Þ2

Rab9 Rac- Rad- . ~A4!

Now we use the property that has worked on all the
amples needed here: namely, that a symmetric continu
function on$(x1 ,...,xp); iÞ j ⇒xiÞxj% is continuous onRp.
Writing for any f (x1 ,...,xp) symmetric and continuous,

(
2Þ2

f 5 (
a1 ,...,ap

)
i , j

~12da1aj
! f ~xa1

,...,xap
!, ~A5!

and expanding yields, for the three and four-replica sum

(
abc,2Þ2

f abc5(
abc

f abc23(
ab

f aab12(
a

f aaa

(
abcd,2Þ2

f abcd5 (
abcd

f abcd26(
abc

f aabc13(
ab

f aabb

18(
ab

f aaab26(
a

f aaaa ~A6!

in shorthand notation such thatf abcd5 f (ua ,ub ,uc ,ud). This
is just combinatorics.

For the three-replica sums the procedure is straight
ward, as symmetrization makes manifest the continuity. O
easily finds~we drop an uninteresting single-replica term!

(
abc;2Þ2

Rab9 Rab- Rac- 5(
abc

Rab9 Rab- Rac- 2(
ab

Rab9 Rab-2

(
abc;2Þ2

Rab9 Rac-25(
abc

Rab9 Rac-22(
ab

@Rab9 R-~01 !2

1Rab9 Rab-21R9~0!Rab-2#

(
abc;2Þ2

Rab9 Rac- Rbc- 5(
abc

Rab9 Rac- Rbc- 2(
ab

R9~0!Rab-2,

where in the first line we have applied Eq.~A6! to f abc

5symabcRab9 Rab- Rac- and so on~we define syma1¯ap
as the

sum over all permutations divided byp!).

re-

n-

in

f
pa-
t
u-
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For the four-replica term we find that f abcd

5symabcdRab9 Rac- Rad- has the following limits~in a symbolic
form, omitting the free summations!:

f aabc5
1

6
R9~0!Rab- Rac- 2

1

6
Rab9 Rab- Rbc- 1

1

6
Rac9 Rac- Rbc-

1
1

12
Rbc9 Rab-21

1

12
Rbc9 Rac-2,

f aabb5
1

3
R9~0!Rab-2,

f aaab5
1

12
Rab9 R-~01 !21

1

4
Rab9 Rab-2,

where at each step we had to symmetrize before taking
inciding point limits~checking that this limit was unambigu
ous in each case!.

The final result is found to be

dARab5@Rab9 2R9~0!#~Rab- !22
5

3
Rab9 @R-~01!#2.

~A7!

The same procedure applied to the repeated counterterm
firms that it is unambiguous and given by Eq.~3.38!. Thus,
because of the ominous 5/3 coefficient above, rather than
expected 1, the theory, using this procedure, is not renorm
izable.

Diagrams of classB and C behave properly. One find
with the same method their projections on the two-repl
part:

a85
1

2
Rab99Rab9 Rab9 , ~A8!

b85
1

4
@2R99~0!R9~0!Rab9 1Rab99R9~0!2#, ~A9!

g85b8, ~A10!

d8522@R99~0!R9~0!Rab9 1Rab99Rab9 R9~0!#. ~A11!

Note the R99(0), which here is defined asR-(0)
5R99(01)5R99(02) since R99(u), can be continued a
zero. One has, using the expressions given in Appendix

a95R99~0!~Rab9 !212Rab99R9~0!Rab9 , ~A12!

b91d9522@R99~0!R9~0!Rab9 1Rab99Rab9 R9~0!#,

~A13!

g91l95Rab99R9~0!212R99~0!R9~0!Rab9 , ~A14!

n91h952$R99~0!~Rab9 !21Rab99 @R9~0!#2%. ~A15!

These graphs~more precisely their contribution to two
replica terms! sum exactly to zero:
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,

a91b91g91d91h91l91n950, ~A16!

in agreement with the result of the ambiguous diagramma
in the case of an analytic function.

To conclude, although promising at first sight, this meth
is not satisfactory. The projection defined here seems to
to commute with further contractions. For instance, one
check that upon building diagramsA by contracting the sub-
diagram~a! in Fig. 2 onto a third vertex does give differen
answers if one first projects~a! or not. Since~a! is the diver-
gent subdiagram, this spoils renormalizability. Since the
tial assumptions of the method were rather weak and natu
it would be interesting to see whether this problem can
better understood in order to repair this method.

APPENDIX B: DIRECT NONANALYTIC
PERTURBATION THEORY

In this section we give some details on the method wh
one performs straight perturbation theory using a nonanal
disorder correlatorR0(u) in the action. Expanding inR0(u),
this involves computing Gaussian averages of nonanal
functions: thus, we start by giving a short list of formula
useful for the field theory calculations of this section. O
should keep in mind that these formulas are equally us
for computing averages of nonanalyticobservablesin a
Gaussian~or more generally, analytic! theory.

1. Gaussian averages of nonanalytic functions: Formulas

We start by deriving some auxiliary functions, then give
list of expectation values for nonanalytic observables o
general Gaussian measure.

We need

E
0

`

dq~eiqx1e2 iqx!e2hq5
2h

h21x2 . ~B1!

Integrating once overx starting at 0 yields

1

i E0

` dq

q
~eiqx2e2 iqx!e2hq52 arctanS x

h D . ~B2!

The right-hand side reduces in the limit ofh→0 to p sgn(x),
which gives a representation of sgn(x):

sgn~x!5 lim
h→0

2

p E
0

` dq

q
sin~qx!e2hq

5 lim
h→0

1

p E
2`

` dq

q
sin~qx!e2huqu. ~B3!

By integrating once more, we obtain

uxu5 lim
h→0

2

p E
0

` dq

q2 @12cos~qx!#e2hq. ~B4!

This formula is easily generalized to higher odd powers
uxu, by integrating more often. The result is
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uxu2n215 lim
h→0

2

p
~21!nG~2n!E

0

` dq

q2n e2hq cos~qx!un ,

~B5!

where cos(qx)un means that one has to subtract the firsn
Taylor coefficients of cos(qx), such that cos(qx)un starts at
order (qx)2n:

cos~qx!unª(
,5n

`
@2~qx!2#,

~2, !!
. ~B6!

We now study expectation values. We use the measu

S ^xx& ^xy&

^yx& ^yy&
D 5S 1 t

t 1D , ~B7!
W

02611
from which the general case can be obtained by simple
caling x→x/^xx&1/2, y→y/^yy&1/2. Let us give an explicit
example~we drop the convergence-generating factore2hq

since it will turn out to be superfluous.!

^uxu&5
1

p E
0

` dq

q2 ~22^eiqx&2^e2 iqx&!

5
2

p E
0

` dq

q2 ~12e2q2/2!

5A2

p
. ~B8!

A more interesting example is
^sgn~x!sgn~y!&52
1

p2 E
0

` dq

q E
0

` dp

p (
s,t561

st^eiqsxeipty&

52
1

p2 E
0

` dq

q E
0

` dp

p (
s,t561

ste2~p21q2!/22stpqt

5
1

2p2 E
2`

` dq

q E
2`

` dp

p
e2~p21q2!/2~epqt2e2pqt!

5
1

2p2 E
0

t

dsE
2`

`

dqE
2`

`

dp e2~p21q2!/2~epqs1e2pqs!

5
2

p E
0

t

ds
1

A12s2
5

2

p
arcsin~ t !. ~B9!
ive

s,
Another generally valid strategy is to use a path integral.
note the important formula

^ f ~x,y!&5
1

2pA12t2 E2`

`

dxE
2`

`

dy f~x,y!

3expF2
x21y222txy

2~12t2! G . ~B10!

An immediate consequence is

^ f ~x!d~y!&5
1

2pA12t2 E2`

`

dx f~x!expF2
x2

2~12t2!G
5

1

2p E
2`

`

dz f~zA12t2!exp~2z2!

5
1

A2p
^ f ~xA12t2!&. ~B11!
eThe very existence of the path-integral representation~B10!
also proves that Wick’s theorem remains valid. Let us g
an example which can be checked by using either Eq.~B10!
or ~B8!:

^x2uyu&5^x2&^uyu&12^xy&^x sgn~y!&

5^x2&^uyu&12^x,y&2^d~y!&

5A2

p
~11t2!. ~B12!

We finish our excursion by giving a list of useful formula
which can be obtained by both methods:

^uxyu&5
2

p
@A12t21t arcsin~ t !#, ~B13!

^xyuyu&52A2

p
t, ~B14!
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^xyuxyu&5
2

p
@3tA12t21~112t2!arcsin~ t !#, ~B15!

^uxy3u&5
2

p
@~21t2!A12t213t arcsin~ t !#. ~B16!

2. Perturbative calculation of the two-point function
with a nonanalytic action

Let us consider the expansion of the two-point functio

^ux
auy

b&5
1

T2 ^ux
auy

bR&1
1

2T4 ^ux
auy

bRR&1O~R3!

~B17!

in powers of the disorder8 whereR5 1
2 *zSe fR0(uz

e f), with
uz

e f5uz
e2uz

f . We want to evaluate these averages atT50
with a nonanalytic actionR0(u). We restrict ourselves toa
Þb, since atT50 the result should be the same fora5b,
and we drop the subscript 0 from now on. As mention
above, the Wick theorem still applies: thus, we can first c
tract the external legs. The term linear inR yields the di-
mensional reduction result~2.14!: thus, we note^ux

auy
b&

5^ux
auy

b&DR1^ux
auy

b&8 and we find

^ux
auy

b&85
1

T2 E
zw

S GxzGywK (
cd

R8~uz
ac!R8~uw

bd!L
2

1

2
GxzGyzK (

cd
R9~uz

ab!R~uw
cd!L D ~B18!

up toO(R3) terms. For peace of mind one can introduce
restrictionscÞa, dÞb in the first sum andcÞd in the sec-
ond, but this turns out to be immaterial at the end. We n
only, in addition to Eq.~5.2!,

R8~u!5R9~0!u1
1

2
R-~01!uuuu1

1

6
R99~01!u3,

R9~u!5R9~0!1R-~01!uuu1
1

6
R99~01!u2, ~B19!

since higher-order terms inu yield higher powers ofT. Using
Eq. ~B13! to evaluate Gaussian averages, this yields

^ux
auy

b&85R-~01!2Gzz
2 E

zw
S GxzGyw(

cd
f1~ t !

2
1

3
GxzGyz(

cd
f2~ t8! D , ~B20!

where we denote

t5
Gzw

2Gzz
~dab1dcd2dad2dbc!, ~B21!

8These averages are connected but this is not needed here.
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t85
Gzw

2Gzz
~dac1dbd2dad2dbc!, ~B22!

f1~ t !5
2

p
@3tA12t21~112t2!arcsin~ t !#, ~B23!

f2~ t8!5
2

p
@~21t82!A12t8213t8 arcsin~ t8!#.

~B24!

Note that the cross termsR9(0)R99(01) involve analytic
average9 and yield zero~a remnant of dimensional reduc
tion!. Also, to this order, no terms with negative powers ofT
survive for n50 ~see discussion below!. Performing the
combinatorics in the replica sums, we find, forn50,

^ux
auy

b&85R-~01!2Gzz
2 E

zw
FGxzGywF1S Gzw

Gzz
D

1GxzGyzF2S Gzw

Gzz
D G , ~B25!

F1~s!52f1S s

2D2f1~s!, ~B26!

F2~s!52
2

3
f2~s!1

8

3
f2S s

2D22f2~0!. ~B27!

It is important for the following to note that cancellatio
occur in the small-argument behavior of these functio
namely, one has F1(s)52s3/p1O(s5) and F2(s)
5s4/(4p)1O(s6). In d50 it simplifies ~setting Gxy
51/m2 and restoring the subscript! to

^uaub&52
R09~0!

m4 2A
R0-~01!2

m8 1O~R0
3/m12!, ~B28!

with A5(24227)18p)/(3p). As such, this formula and
Eq. ~B25! seem fine and it may even be possible to che
them numerically ind50 for largem using a bare disorde
with the proper nonanalytic correlatorR0(u). To obtain the
asymptoticm→0 and large-scale behavior in anyd, one
must resum higher orders and use an RG procedure.
question is whether the above formula~B25! can be used in
an RG treatment.

3. Discussion

We found that this procedure does not work and we n
explain why. Let us rewrite the result~B25!, including the
dimensional reduction term:

Cab~q!5
2R09~0!2R0-~01!2@A1~q!1A2~0!#

~q21m2!2 ,

9R9(0) can always be set formally to zero by a trivial additiv
random force contribution.
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Ai~q!5E ddx eiqxG~x!2c i~x!,

c i~x!52S G~0!

G~x! D
2

F i S G~x!

G~0! D , ~B29!

with i 51,2. One notes that ifc1(x) were a constant equal t
unity, one would recover the result~6.5! obtained in Sec. VI.
However, one easily sees that whilec1(x)'0.346 ap-
proaches a constant asx!a wherea;1/L is an ultraviolet
cutoff, it decreases asc1(x);x22d at largex, as a result of
the above-mentioned cancellations in the small-argument
havior of the functionsF i(x). Thus the infrared divergenc
responsible for all interesting anomalous dimensions in
two-point function as the nontrivial value ofz is destroyed,
and the method fails. Even more, the theory would not e
be renormalizable.

We have performed a similar calculation in the dynami
field theory formulation of the equilibrium problem in th
limit T→0, using a nonanalytic action. There the meth
fails for very similar reasons. Only at the depinning thres
old were we able to construct the dynamical theory as
plained in @68,69#. One might suspect that one has to st
with a somehow ‘‘normal-ordered’’ theory where se
contractions—i.e., terms proportional toGxx—are removed,
since theyneverappear in theT50 perturbation theory. We
have not been able to find such a formulation.

Another problem with direct perturbation theory in
nonanalytic action is that there isa priori no guarantee that i
has a well-definedT50 limit. Let us illustrate this in a
simple example ind50. The following correlation has bee
computed exactly by a completely different method@71# for
the random-field model ind50 ~Brownian motion plus qua-
dratic energy landscape:^¯&0 indicates averages over allu!:

^ua
2&s5K ua

2 expS (
cd

s

2T2 uuc2udu2
1

2
m2(

c
uc

2D L
0

5C2s2/3m28/3, ~B30!

a result which is also obtained by extrapolation fromd54
using the FRG, as detailed in Sec. IV B 2.

On the other hand, the above perturbative method yie
expanding ins,

^ua
2&s5

T

m2
1

s

ATm3

1

p
(
cÞd

~11t2!1O~s2!, ~B31!

with t5(dac2dad)/&. In the zero-temperature limit
^ua

2&s'2s/ATm31O(s2), which is ill behaved. The ab
sence of a well-defined Taylor expansion in the ze
temperature limit is of course a sign that the correct re
~B30! is simply nonanalytic ins. Although this solvable ex-
ample involves a correlatorR0(u) with a supercusp, it is
possible that a similar problem occurs at higher orders~three
or higher! in the expansion of the two-point function in th
case of the usual cusp nonanalyticity. There have been
flicting claims in the literature about this question@47,54#—
02611
e-
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n
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i.e., the presence of fractional powers at higher orders of
expansion in a nonanalytic disorder—and it may be wo
reexamining. It is however important to note that, since the
expansion proposed in the main text is not based on su
direct expansion, itdoes notyield fractional powers ofe,
contrarily to what was conjectured in@47#.

Finally, let us point out some properties of nonanaly
observables. Let us study, e.g.,̂uua

xu&. Expansion in powers
of R yields a first-order term;1/AT. This is the sign of
nonanalytic behavior, and indeed it is easy to find that

^uua
xu&5

2

p
A^~ua

x!2&DR2
2&

3p
R0-~01!G~0!2

3E
y
@A12t2~21t2!13t arcsin~ t !22#1O~R2!,

~B32!

where ^(ua
x)2&DR52*qR0(0)9/(q21m2)2 and t

5G(y)/&G(0). The first term is obtained by noting tha
R09(0) acts as a Gaussian random force, which can then
separated from the nonlinear force, and the last term, ev
ated using the above formula, is the only one which survi
at T50 to linear order inR0 . The formula~B32! is interest-
ing as a starting point to compute universal ratio, such
^uua

xu&2/^(ua
x)2& or ^uua

x2ua
yu&2/^(ua

x2ub
y)2&. Indeed, one

notes that ford,4 the integral in the term proportional t
R0-(01) is infrared divergent at largey. This is left for future
study.

APPENDIX C: DIAGRAMS OF CLASS C

In this appendix we give the expression of each of
diagrams of classC represented in Fig. 13 in the exclude
~nonambiguous! diagrammatics. One finds, including a
combinatorial factors,

d95b9, l95g9, n95h9, ~C1!

with

a952Rab99Rac9 Rbc9 , ~C2!

b91d952Rab99Rab9 Rbc9 , ~C3!

g91l95Rab99Rac9 Rad9 , ~C4!

h91n95Rac99~Rab9 !2. ~C5!

APPENDIX D: SLOOP CALCULATION OF DIAGRAMS
B AND C

Let us consider the expressiondBR for the B diagrams in
the excluded diagrammatics~5.14!. Let us start again from a
single sloop~5.18! and~5.19! and contract this time betwee
y andz twice to produce a diagram of type B. This yields
2-37
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. ~D1!

the termsR9(0) arising because the first vertex is not co
tracted in the process, so one must separate the~unambigu-
ous! diagonal part to obtain excluded sums.

If one subtracts this identity from Eq.~5.14!, one finds
that there remain some improper three-replica terms~the im-
proper four-replica term, however, cancels!. This is because
in the process of our last contractions we have generated
sloops, but since replicas were excluded, they have to
extracted with care.

Let us rewrite the two possible ‘‘double sloops’’ from un
restricted sums to restricted:

. ~D2!

~D3!

In the process we have set to zero the terms

1

2
R99~0!(

acd
Rac9 Rad9 →0, ~D4!

1

2
R99~0! (

acbd
Rac9 Rbd9 →0, ~D5!

since they are proper three- and four-replica terms.
Defining now

~D6!

The simplest combination which allows to extract the tw
replica part is

~D7!
02611
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We now turn to graphsC. The expression fordCR is
given as the sum of all contributions in Appendix C. With
the sloop method it gives immediately zero:dCR50. This
is because one can start by contracting the tadpole. Since
is a sloop, it can be set to zero:

1

8T5 Gxx (
abcde f

R9~uab
x !R~ucd

y !R~ue f
z ![0. ~D8!

Upon further contractions, proceeding as in Sec. V B, o
obtains exactly that the sum of all graphsC with excluded
vertices is identically zero. GraphsC sum to zero since they
are all descendants of a sloop.

APPENDIX E: CALCULATION OF AN INTEGRAL

We will illustrate the universality of

X5
2e~2I A2I 1

2!

~eI 1!2 ~E1!

using a broad class of IR cutoff functions—namely, a prop
gator

1

q21m2 →E dx
g~x!

q21xm2 . ~E2!

Here we denote*xA(x)[*dx g(x)A(x) and we normalize
*dx g(x)51 ~consistent with fixing the elastic coefficient t
unity!. We will show thatX511O(e) independent ofg(x).

First, we write

I 15E
x,x8

E
q

1

~q21xm2!~q21x8m2!

5E
x,x8

E
a1.0,a2.0

e2a1~q21xm2!1a2~q21x8m2!

5S E
q
e2q2D E

x,x8
E

0

`

da1E
0

`

da2~a11a2!2d/2

3e2m2~a1x1a2x8!, ~E3!

and using the parametrizationa5a11a2 and la5(a1
2a2)/2, one obtains

I 15S E
q
e2q2D E

x,x8
E

21/2

1/2

dlE
0

`

da a12d/2

3e2m2a@~x1x8!/21l~x2x8!#

5m2eS E
q
e2q2DGS e

2D E
x,x8

E
21/2

1/2

dl

3Fx1x8

2
1l~x2x8!G2e/2

. ~E4!

The hat diagram is
2-38
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I A5E
xi

E
q1 ,q2

1

~q1
21x1m2!~q2

21x2m2!~q2
21x28m

2!„~q11q2!21x3m2
…

5E
xi

E
a,b1 ,b2 ,g.0

e2a~q1
2
1x1m2!2b1~q2

2
1x2m2!2b2~q2

2
1x28m2!2g@~q11q2!21x3m2#

5S E
q
e2q2D 2E

xi

E
a,b1 ,b2 ,g.0

e2m2~x1a1x2b11x28b21x3g!FDetS a1g g

g b11b21g D G2d/2

5S E
q
e2q2D 2E

xi

E
a,b1 ,b2 ,g.0

g32de2m2~x1a1x2b11x28b21x3!g@a1b11b21a~b11b2!#2d/2

5S E
q
e2q2D 2

G~42d!m22eJ, ~E5!
n

where we split the divergent integralJ in pieces, which are
either finite or where the divergence can be calculated a
lytically:

J5E
xi

E
0

`

daE
0

`

db G~a,b,xi !5J11J21J3 , ~E6!

G~a,b,xi !5~a1b1ab!221e/2E
21/2

1/2

dl

3H x1a1bFx21x28

2
1l~x22x28!G1x3J 2e

,

~E7!

J15E
xi

E
0

`

daE
0

1

db G~a,b,xi !5 ln 21O~e!, ~E8!

J25E
xi

E
0

`

daE
1

`

dbH G~a,b,xi !2
1

~11a!22e/2b11e/2

3E
21/2

1/2

dlFx21x28

2
1l~x22x28!G2eJ

52 ln 21O~e!, ~E9!

J35E
0

`

daE
1

`

db
1

~11a!22e/2b11e/2 E
x2 ,x28

E
21/2

1/2

dl

3Fx21x28

2
1l~x22x28!G2e

. ~E10!

This gives the final result for the hat diagram,
02611
a- I A5S E
q
e2q2D 2

G~42d!m22eS 2

e
111O~e! D

3E
x2 ,x28

E
21/2

1/2

dlFx21x28

2
1l~x22x28!G2e

5S 1

2e2 1
1

4e
1O~e0! D ~eI 1!2, ~E11!

where we have used that in the one-loop integral~E4!,

E
x,x8

E
21/2

1/2

dlFx1x8

2
1l~x2x8!G2e/2

5S 11
1

2
ae1O~e2! D , ~E12!

with a depending on the regulating functiong(x) and in the
two-loop integral~E11!:

E
x,x8

E
21/2

1/2

dlFx1x8

2
1l~x2x8!G2e

5@11ae1O~e2!#5S 11
1

2
ae1O~e2! D 2

, ~E13!

with the samea.

FIG. 15. Diagrams to orderTR2 with excluded vertices.
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APPENDIX F: SUMMARY OF ALL NONAMBIGUOUS
DIAGRAMS, FINITE TEMPERATURE

In this appendix we give all one- and two-loop diagram
including finiteT, evaluated with the unambiguous diagram
matics, which have not been given in the text; see F
15–18. We use the unambiguous vertex(aÞbR(ua2ub), de-
noteRab5R(ua2ub), Rab8 5R8(ua2ub), etc.

The list of all UV-divergent diagrams up to two loops
given in Fig. 18. We write their contribution to the effectiv
action as

G@u#uux5u52
1

2T2 R ~F1!

R5(
ab

Rab1d~1!R1d~2!R1¯ . ~F2!

The total one-loop contribution is

d~1!R5S (
aÞb

1

2
~Rab9 !21 (

aÞb,aÞc

1

2
Rab9 Rac9 D I 1

1S T(
aÞb

Rab9 D I t . ~F3!

The total two-loop contribution is

d~2!R5dA
~2!R1dB

~2!R1dC
~2!R1dT

~2!R, ~F4!

wheredA
(2)R is given Eq.~5.13!, dB

(2)R is given in Eq.~5.14!,
and

FIG. 16. Diagrams to orderTR2 with nonexcluded vertices.
02611
-
s.

dC
~2!R5F2 (

aÞb,aÞc
Rab99Rab9 Rac9 2 (

a,b,c,2Þ2
Rab99Rac9 Rbc9

1 (
aÞb,aÞc,aÞd

Rab99Rac9 Rad9

1 (
aÞb,aÞc

Rab99 ~Rac9 !2G I tI T , ~F5!

while the finite-T diagrams are given by

dT
~2!R5S 1

2
T2(

aÞb
Rab99 D I t

21S 1

6
T (

aÞb,aÞc
Rab- Rac-

1
1

2
T~Rab- !2D I 41S T(

aÞb
Rab99Rab9

1T (
aÞb,aÞc

Rab99Rac9 D I 1I t , ~F6!

I 45E
q1 ,q2

1

q1
2q2

2~q11q2!2 . ~F7!

For ananalytic Rone substitutesRab→Rab(12dab) in the
above formula and selects the two-replica terms:

FIG. 17. Diagrams to orderT2R with excluded vertices.

FIG. 18. Divergent unsplit diagrams to one and two loops.
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d~1!R5TR9I t1F1

2
~R9!22R9~0!R9G I 1 , ~F8!

dB
~2!R5

1

2
R99@R92R9~0!#2I 1

2, ~F9!

dA
~2!R5@R92R9~0!#~R-!2I A , ~F10!

dC
~2!R50, ~F11!

dT
~2!R5

1

2
T2R99I t

21
1

2
T~R-!2I 41$TR99@R92R9~0!#

2TR9R99~0!%I 1I t . ~F12!

Let us show that if one renounces to the projection o
two-replica terms, one can still obtain some formal renorm
izability property, but at the cost of introducing an unma
ageable series of terms with more than two replicas.

We show how to subtract divergences by adding coun
terms of similar form. Let us discuss onlyT50. To cancel
the one-loop divergences we introduce the counterterm

dc
~1!R1S (

aÞb

1

2
~Rab9 !21 (

aÞb,aÞc

1

2
Rab9 Rac9 D I 1

div .

~F13!

The repeated counterterm is
v

02611
o
l-
-

r-

d~1,1!R5FRab99 ~Rab9 !21Rab9 ~Rab- !21Rab99Rab9 Rac9 1Rab9 ~Rac- !2

1Rab99Rab9 Rac9 1
1

2
Rab99Rac9 Rad9 1

1

2
Rab99Rac9 Rbd9

1Rab9 Rab- Rac- 1
1

2
Rab9 Rac- Rad- 1

1

2
Rab9 Rac- Rac-

2
1

2
Rab9 Rac- Rbc- G I 1I 1

div , ~F14!

omitting all ~excluded! sums. One checks that

2~dB
~2!R1dA

~2!R!;d~1,1!R1OS 1

e D ~F15!

using that 2I A5I 1
21O(1/e). Thus there is some renormaliz

ability property for R. One can thus define formally ab
function

2m]mR5eR1F (
aÞb

1

2
~Rab9 !21 (

aÞb,aÞc

1

2
Rab9 Rac9 G~eI 1!

1dA
~2!R

e~ I A2 1
2 I 1

2!

I A
. ~F16!

R, however, includes a series of terms each with exclu
sums overp replica. Thus to be consistent one should
principle include them from the start and pursue the meth
It is not clear that it can be closed in any way.
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